ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivariant Semi-topological Invariants, Atiyahs KR-theory, and Real Algebraic Cycles

168   0   0.0 ( 0 )
 نشر من قبل Mircea Voineagu
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish an Atiyah-Hirzebruch type spectral sequence relating real morphic cohomology and real semi-topological K-theory and prove it to be compatible with the Atiyah-Hirzebruch spectral sequence relating Bredon cohomology and Atiyahs KR-theory constructed by Dugger. An equivariant and a real version of Suslins conjecture on morphic cohomology are formulated, proved to come from the complex version of Suslin conjecture and verified for certain real varieties. In conjunction with the spectral sequences constructed here this allows the computation of the real semi-topological K-theory of some real varieties. As another application of this spectral sequence we give an alternate proof of the Lichtenbaum-Quillen conjecture over $R$, extending an earlier proof of Karoubi and Weibel.



قيم البحث

اقرأ أيضاً

We establish the analogue of the Friedlander-Mazur conjecture for Tehs reduced Lawson homology groups of real varieties, which says that the reduced Lawson homology of a real quasi-projective variety $X$ vanishes in homological degrees larger than th e dimension of $X$ in all weights. As an application we obtain a vanishing of homotopy groups of the mod-2 topological groups of averaged cycles and a characterization in a range of indices of the motivic cohomology of a real variety as homotopy groups of the complex of averaged equidimensional cycles. We also establish an equivariant Poincare duality between equivariant Friedlander-Walker real morphic cohomology and dos Santos real Lawson homology. We use this together with an equivariant extension of the mod-2 Beilinson-Lichtenbaum conjecture to compute some real Lawson homology groups in terms of Bredon cohomology.
76 - Richard P. Thomas 2018
In [MT2] the Vafa-Witten theory of complex projective surfaces is lifted to oriented $mathbb C^*$-equivariant cohomology theories. Here we study the K-theoretic refinement. It gives rational functions in $t^{1/2}$ invariant under $t^{1/2}leftrightarr ow t^{-1/2}$ which specialise to numerical Vafa-Witten invariants at $t=1$. On the instanton branch the invariants give the virtual $chi_{-t}^{}$-genus refinement of Gottsche-Kool. Applying modularity to their calculations gives predictions for the contribution of the monopole branch. We calculate some cases and find perfect agreement. We also do calculations on K3 surfaces, finding Jacobi forms refining the usual modular forms, proving a conjecture of Gottsche-Kool. We determine the K-theoretic virtual classes of degeneracy loci using Eagon-Northcott complexes, and show they calculate refined Vafa-Witten invariants. Using this Laarakker [Laa] proves universality results for the invariants.
We introduce a Bredon motivic cohomology theory for smooth schemes defined over a field and equipped with an action by a finite group. These cohomology groups are defined for finite dimensional representations as the hypercohomology of complexes of e quivariant correspondences in the equivariant Nisnevich topology. We generalize the theory of presheaves with transfers to the equivariant setting and prove a Cancellation Theorem.
104 - J.D. Quigley 2019
We generalize the Mahowald invariant to the $mathbb{R}$-motivic and $C_2$-equivariant settings. For all $i>0$ with $i equiv 2,3 mod 4$, we show that the $mathbb{R}$-motivic Mahowald invariant of $(2+rho eta)^i in pi_{0,0}^{mathbb{R}}(S^{0,0})$ contai ns a lift of a certain element in Adams classical $v_1$-periodic families, and for all $i > 0$, we show that the $mathbb{R}$-motivic Mahowald invariant of $eta^i in pi_{i,i}^{mathbb{R}}(S^{0,0})$ contains a lift of a certain element in Andrews $mathbb{C}$-motivic $w_1$-periodic families. We prove analogous results about the $C_2$-equivariant Mahowald invariants of $(2+rho eta)^i in pi_{0,0}^{C_2}(S^{0,0})$ and $eta^i in pi_{i,i}^{C_2}(S^{0,0})$ by leveraging connections between the classical, motivic, and equivariant stable homotopy categories. The infinite families we construct are some of the first periodic families of their kind studied in the $mathbb{R}$-motivic and $C_2$-equivariant settings.
249 - Zoran v{S}koda 2009
We here present rudiments of an approach to geometric actions in noncommutative algebraic geometry, based on geometrically admissible actions of monoidal categories. This generalizes the usual (co)module algebras over Hopf algebras which provide affi ne examples. We introduce a compatibility of monoidal actions and localizations which is a distributive law. There are satisfactory notions of equivariant objects, noncommutative fiber bundles and quotients in this setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا