ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental determination of the Weiss temperature of Mn$_{12}$-ac and Mn$_{12}$-ac-MeOH

214   0   0.0 ( 0 )
 نشر من قبل Myriam P. Sarachik
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of the susceptibility in the temperature range from $3.5$ K to $6.0$ K of a series of Mn$_{12}$-ac and Mn$_{12}$-ac-MeOH samples in the shape of rectangular prisms of length $l_c$ and square cross-section of side $l_a$. The susceptibility obeys a Curie-Weiss Law, $chi=C/(T-theta)$, where $theta$ varies systematically with sample aspect ratio. Using published demagnetization factors, we obtain $theta$ for an infinitely long sample corresponding to intrinsic ordering temperatures $T_c approx 0.85$ K and $approx 0.74$ K for Mn$_{12}$-ac and Mn$_{12}$-ac-MeOH, respectively. The difference in $T_c$ for two materials that have nearly identical unit cell volumes and lattice constant ratios suggests that, in addition to dipolar interactions, there is a non-dipolar (exchange) contribution to the Weiss temperature that differs in the two materials because of the difference in ligand molecules.



قيم البحث

اقرأ أيضاً

145 - P. Subedi , A. D. Kent , Bo Wen 2012
We report measurements of the magnetic susceptibility of single crystals of Mn$_{12}$-acetate-MeOH, a new high-symmetry variant of the original single molecule magnet Mn$_{12}$-acetate. A comparison of these data to theory and to data for the Mn$_{12 }$ acetate material shows that Mn$_{12}$-acetate-MeOH is a realization of a transverse-field Ising ferromagnet in contrast to the original Mn$_{12}$ acetate material, in which solvent disorder leads to effects attributed to random field Ising ferromagnetism.
We present a comprehensive and systematic magnetization and ac susceptibility study of Mn$_{1-x}$Fe$_{x}$Si over an extensive range of ten Fe concentrations between $x$ = 0 - 0.32. With increasing Fe substitution, the critical temperature decreases b ut the magnetic phase diagrams remain qualitatively unaltered for $x$ $leq$ $x^*$ $approx$ 0.11 with clear boundaries between the helical, conical, and skyrmion lattice phase as well as an enhanced precursor phase. A notably different behavior sets in for $x$ $=$ 0.11, 0.13 and 0.14, where certain characteristics of helimagnetic correlations persist, but without clear phase boundaries. Although a qualitative change already sets in at $x^*$, the transition temperature and spontaneous magnetization vanish only at $x_C$ = 0.17 where also the average magnetic interactions change sign. Although the Curie-Weiss temperature reaches -12~K for $x$ = 0.32, no signature of long-range magnetic order is found down to the lowest temperature, indicating a possible significant role for quantum fluctuations in these systems.
377 - A.A. Sapozhnik , C. Luo , H. Ryll 2018
Mn$_2$Au is an important antiferromagnetic (AF) material for spintronics applications. Due to its very high Neel temperature of about 1500 K, some of the basic properties are difficult to explore, such as the AF susceptibility and the exchange consta nts. Experimental determination of these properties is further complicated in thin films by unavoidable presence of uncompensated and quasiloose spins on antisites and at interfaces. Using x-ray magnetic circular dichroism (XMCD), we have measured the spin and orbital contribution to the susceptibility in the direction perpendicular to the in-plane magnetic moments of a Mn$_2$Au(001) film and in fields up to 8 T. By performing these measurements at a low temperature of 7 K and at room temperature, we were able to separate the loose spin contribution from the susceptibility of AF coupled spins. The value of the AF exchange constant obtained with this method for a 10 nm thick Mn$_2$Au(001) film equals to (24 $pm$ 5) meV.
Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is rough ly two orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.
188 - A. Chiesa , T. Guidi , S. Carretta 2021
The discovery of magnetic bistability in Mn$_{12}$ more than 20 years ago marked the birth of molecular magnetism, an extremely fertile interdisciplinary field and a powerful route to create tailored magnetic nanostructures. However, the difficulty t o determine interactions in complex polycentric molecules often prevents their understanding. Mn$_{12}$ is an outstanding example of this difficulty: although it is the forefather and most studied of all molecular nanomagnets, an unambiguous determination of even the leading magnetic exchange interactions is still lacking. Here we exploit four-dimensional inelastic neutron scattering to portray how individual spins fluctuate around the magnetic ground state, thus fixing the exchange couplings of Mn$_{12}$ for the first time. Our results demonstrate the power of four-dimensional inelastic neutron scattering as an unrivaled tool to characterize magnetic clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا