ﻻ يوجد ملخص باللغة العربية
We report measurements of the susceptibility in the temperature range from $3.5$ K to $6.0$ K of a series of Mn$_{12}$-ac and Mn$_{12}$-ac-MeOH samples in the shape of rectangular prisms of length $l_c$ and square cross-section of side $l_a$. The susceptibility obeys a Curie-Weiss Law, $chi=C/(T-theta)$, where $theta$ varies systematically with sample aspect ratio. Using published demagnetization factors, we obtain $theta$ for an infinitely long sample corresponding to intrinsic ordering temperatures $T_c approx 0.85$ K and $approx 0.74$ K for Mn$_{12}$-ac and Mn$_{12}$-ac-MeOH, respectively. The difference in $T_c$ for two materials that have nearly identical unit cell volumes and lattice constant ratios suggests that, in addition to dipolar interactions, there is a non-dipolar (exchange) contribution to the Weiss temperature that differs in the two materials because of the difference in ligand molecules.
We report measurements of the magnetic susceptibility of single crystals of Mn$_{12}$-acetate-MeOH, a new high-symmetry variant of the original single molecule magnet Mn$_{12}$-acetate. A comparison of these data to theory and to data for the Mn$_{12
We present a comprehensive and systematic magnetization and ac susceptibility study of Mn$_{1-x}$Fe$_{x}$Si over an extensive range of ten Fe concentrations between $x$ = 0 - 0.32. With increasing Fe substitution, the critical temperature decreases b
Mn$_2$Au is an important antiferromagnetic (AF) material for spintronics applications. Due to its very high Neel temperature of about 1500 K, some of the basic properties are difficult to explore, such as the AF susceptibility and the exchange consta
Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is rough
The discovery of magnetic bistability in Mn$_{12}$ more than 20 years ago marked the birth of molecular magnetism, an extremely fertile interdisciplinary field and a powerful route to create tailored magnetic nanostructures. However, the difficulty t