ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi Large Area Telescope Observation of a Gamma-ray Source at the Position of Eta Carinae

96   0   0.0 ( 0 )
 نشر من قبل Hiromitsu Takahashi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope detected a gamma-ray source that is spatially consistent with the location of Eta Carinae. This source has been persistently bright since the beginning of the LAT survey observations (from 2008 August to 2009 July, the time interval considered here). The gamma-ray signal is detected significantly throughout the LAT energy band (i.e., up to ~100 GeV). The 0.1-100 GeV energy spectrum is well represented by a combination of a cutoff power-law model (< 10 GeV) and a hard power-law component (> 10 GeV). The total flux (> 100 MeV) is $3.7^{+0.3}_{-0.1} times 10^{-7}$ photons s$^{-1}$ cm$^{-2}$, with additional systematic uncertainties of 10%, and consistent with the average flux measured by AGILE (Tavani et al. 2009). The light curve obtained by Fermi is consistent with steady emission. Our observations do not confirm the presence of a gamma-ray flare in 2008 October as reported by Tavani et al. (2009), although we cannot exclude that a flare lasting only a few hours escaped detection by the Fermi LAT. We also do not find any evidence for gamma-ray variability that correlates with the large X-ray variability of Eta Carinae observed during 2008 December and 2009 January. We are thus not able to establish an unambiguous identification of the LAT source with Eta Carinae.



قيم البحث

اقرأ أيضاً

We present the fourth Fermi Large Area Telescope catalog (4FGL) of gamma-ray sources. Based on the first eight years of science data from the Fermi Gamma-ray Space Telescope mission in the energy range from 50 MeV to 1 TeV, it is the deepest yet in t his energy range. Relative to the 3FGL catalog, the 4FGL catalog has twice as much exposure as well as a number of analysis improvements, including an updated model for the Galactic diffuse gamma-ray emission, and two sets of light curves (1-year and 2-month intervals). The 4FGL catalog includes 5064 sources above 4 sigma significance, for which we provide localization and spectral properties. Seventy-five sources are modeled explicitly as spatially extended, and overall 358 sources are considered as identified based on angular extent, periodicity or correlated variability observed at other wavelengths. For 1336 sources we have not found plausible counterparts at other wavelengths. More than 3130 of the identified or associated sources are active galaxies of the blazar class, and 239 are pulsars.
The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results i n a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the baseline model of Stecker et al. (2006) can be ruled out with high confidence.
We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between sim100 MeV and sim100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to sim10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity integrated CO intensity (WCO) at a 1{deg} times1{deg} pixel level. The correlation is found to be linear over a WCO range of ~10 fold when divided in 3 regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The Wco-to-mass conversion factor, Xco, is found to be sim2.3times10^20 cm-2(K km s-1)-1 for the high-longitude part of Orion A (l > 212{deg}), sim1.7 times higher than sim1.3 times 10^20 found for the rest of Orion A and B. We interpret the apparent high Xco in the high-longitude region of Orion A in the light of recent works proposing a non-linear relation between H2 and CO densities in the diffuse molecular gas. Wco decreases faster than the H2 column density in the region making the gas darker to Wco.
The exact mechanism for the production of fast $gamma$-ray variability in blazars remains debated. Magnetic reconnection, in which plasmoids filled with relativistic particles and magnetic fields are formed, is a viable candidate to explain the broad band electromagnetic spectrum and variability of these objects. Using state-of-the-art magnetic reconnection simulations, we generate realistic $gamma$-ray light curves that would be observed with the Fermi Large Area Telescope. A comparison with observed $gamma$-ray flares from flat spectrum radio quasars (FSRQs) reveals that magnetic reconnection events lead to comparable flux levels and variability patterns, in particular when the reconnection layer is slightly misaligned with the line of sight. Emission from fast plasmoids moving close to the line of sight could explain fast variability on the time scales of minutes for which evidence has been found in observations of FSRQs. Our results motivate improvements in existing radiative transfer simulations as well as dedicated searches for fast variability as evidence for magnetic reconnection events.
249 - Qiang Yuan 2017
The remnant of supernova explosion is widely believed to be the acceleration site of high-energy cosmic ray particles. The acceleration timescale is, however, typically very long. Here we report the detection of a variable $gamma$-ray source with the Fermi Large Area Telescope, which is positionally and temporally consistent with a peculiar supernova, iPTF14hls. A quasi-stellar object SDSS J092054.04+504251.5, which is probably a blazar according to the infrared data, is found in the error circle of the $gamma$-ray source. More data about the $gamma$-ray source and SDSS J092054.04+504251.5 are needed to confirm their association. On the other hand, if the association between the $gamma$-ray source and the supernova is confirmed, this would be the first time to detect high-energy $gamma$-ray emission from a supernova, suggesting very fast particle acceleration by supernova explosions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا