ﻻ يوجد ملخص باللغة العربية
We show within a local self-consistent mean-field treatment that a random distribution of magnetic adatoms can open a robust gap in the electronic spectrum of graphene. The electronic gap results from the interplay between the nature of the graphene sublattice structure and the exchange interaction between adatoms.The size of the gap depends on the strength of the exchange interaction between carriers and localized spins and can be controlled by both temperature and external magnetic field. Furthermore, we show that an external magnetic field creates an imbalance of spin-up and spin-down carriers at the Fermi level, making doped graphene suitable for spin injection and other spintronic applications.
We have measured a strong increase of the low-temperature resistivity $rho_{xx}$ and a zero-value plateau in the Hall conductivity $sigma_{xy}$ at the charge neutrality point in graphene subjected to high magnetic fields up to 30 T. We explain our re
Since the discovery of the quantum anomalous Hall effect in the magnetically doped topological insulators (MTI) Cr:(Bi,Sb)$_2$Te$_3$ and V:(Bi,Sb)$_2$Te$_3$, the search for the exchange coupling mechanisms underlying the onset of ferromagnetism has b
Double-exchange mechanisms in RE$_{1-x}$AE$_{x}$MnO$_{3}$ manganites (where RE is a trivalent rare-earth ion and AE is a divalent alkali-earth ion) relies on the strong exchange interaction between two Mn$^{3+}$ and Mn$^{4+}$ ions through interfiling
Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of
This study examines the effect of distorted triangular magnetic interactions in the Kagome lattice. Using a Holstein-Primakoff expansion, we determine the analytical solutions for classical energies and the spin-wave modes for various magnetic config