ترغب بنشر مسار تعليمي؟ اضغط هنا

Randomized benchmarking of atomic qubits in an optical lattice

166   0   0.0 ( 0 )
 نشر من قبل Steven Olmschenk
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform randomized benchmarking on neutral atomic quantum bits (qubits) confined in an optical lattice. Single qubit gates are implemented using microwaves, resulting in a measured error per randomized computational gate of 1.4(1) x 10^-4 that is dominated by the system T2 relaxation time. The results demonstrate the robustness of the system, and its viability for more advanced quantum information protocols.



قيم البحث

اقرأ أيضاً

We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states o f trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.
To improve the performance of multi-qubit algorithms on quantum devices it is critical to have methods for characterizing non-local quantum errors such as crosstalk. To address this issue, we propose and test an extension to the analysis of simultane ous randomized benchmarking data -- correlated randomized benchmarking. We fit the decay of correlated polarizations to a composition of fixed-weight depolarizing maps to characterize the locality and weight of crosstalk errors. From these errors we introduce a crosstalk metric which indicates the distance to the closest map with only local errors. We demonstrate this technique experimentally with a four-qubit superconducting device and utilize correlated RB to validate crosstalk reduction when we implement an echo sequence.
Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual 31-P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmar king of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized 31-P nucleus of a single P donor in isotopically purified 28-Si. We find average gate fidelities of 99.95 % for the electron, and 99.99 % for the nuclear spin. These values are above certain error correction thresholds, and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware, and not the intrinsic behaviour of the qubit.
A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standa rd process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized pi/2 pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.
As quantum circuits increase in size, it is critical to establish scalable multiqubit fidelity metrics. Here we investigate three-qubit randomized benchmarking (RB) with fixed-frequency transmon qubits coupled to a common bus with pairwise microwave- activated interactions (cross-resonance). We measure, for the first time, a three-qubit error per Clifford of 0.106 for all-to-all gate connectivity and 0.207 for linear gate connectivity. Furthermore, by introducing mixed dimensionality simultaneous RB --- simultaneous one- and two-qubit RB --- we show that the three-qubit errors can be predicted from the one- and two-qubit errors. However, by introducing certain coherent errors to the gates we can increase the three-qubit error to 0.302, an increase that is not predicted by a proportionate increase in the one- and two-qubit errors from simultaneous RB. This demonstrates three-qubit RB as a unique multiqubit metric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا