ترغب بنشر مسار تعليمي؟ اضغط هنا

2-Variable Boolean Operation -- its use in Pattern Formation

129   0   0.0 ( 0 )
 نشر من قبل Sudhakar Sahoo
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper the theory of 2-Variable Boolean Operation (2-VBO) has been discussed on a pair of n-bit strings. 2-VBO serves to bring out the relation between numbers which when plot on a 2-D surface form interesting patterns; patterns that may be fixed, periodic, chaotic or complex. Some of these patterns represent natural fractals. This paper also provides mathematical analysis corresponding to each of the obtained patterns, which would aid to understanding their formation. 2-VBO is an attempt towards the production and classification of patterns which represent various mathematical models and naturally occurring phenomena.



قيم البحث

اقرأ أيضاً

Dynamical patterns in complex networks of coupled oscillators are both of theoretical and practical interest, yet to fully reveal and understand the interplay between pattern emergence and network structure remains to be an outstanding problem. A fun damental issue is the effect of network structure on the stability of the patterns. We address this issue by using the setting where random links are systematically added to a regular lattice and focusing on the dynamical evolution of spiral wave patterns. As the network structure deviates more from the regular topology (so that it becomes increasingly more complex), the original stable spiral wave pattern can disappear and a different type of pattern can emerge. Our main findings are the following. (1) Short-distance links added to a small region containing the spiral tip can have a more significant effect on the wave pattern than long-distance connections. (2) As more random links are introduced into the network, distinct pattern transitions can occur, which include the transition of spiral wave to global synchronization, to a chimera-like state, and then to a pinned spiral wave. (3) Around the transitions the network dynamics is highly sensitive to small variations in the network structure in the sense that the addition of even a single link can change the pattern from one type to another. These findings provide insights into the pattern dynamics in complex networks, a problem that is relevant to many physical, chemical, and biological systems.
Partial differential equations (PDE) have been widely used to reproduce patterns in nature and to give insight into the mechanism underlying pattern formation. Although many PDE models have been proposed, they rely on the pre-request knowledge of phy sical laws and symmetries, and developing a model to reproduce a given desired pattern remains difficult. We propose a novel method, referred to as Bayesian modelling of PDE (BM-PDE), to estimate the best PDE for one snapshot of a target pattern under the stationary state. We show the order parameters extracting symmetries of a pattern together with Bayesian modelling successfully estimate parameters as well as the best model to make the target pattern. We apply BM-PDE to nontrivial patterns, such as quasi-crystals, a double gyroid and Frank Kasper structures. Our method works for noisy patterns and the pattern synthesised without the ground truth parameters, which are required for the application toward experimental data.
We study the effect of topology variation on the dynamic behavior of a system with local update rules. We implement one-dimensional binary cellular automata on graphs with various topologies by formulating two sets of degree-dependent rules, each con taining a single parameter. We observe that changes in graph topology induce transitions between different dynamic domains (Wolfram classes) without a formal change in the update rule. Along with topological variations, we study the pattern formation capacities of regular, random, small-world and scale-free graphs. Pattern formation capacity is quantified in terms of two entropy measures, which for standard cellular automata allow a qualitative distinction between the four Wolfram classes. A mean-field model explains the dynamic behavior of random graphs. Implications for our understanding of information transport through complex, network-based systems are discussed.
190 - Liao Xuhong , Xia Qinzhi , Qian Yu 2010
Oscillatory dynamics of complex networks has recently attracted great attention. In this paper we study pattern formation in oscillatory complex networks consisting of excitable nodes. We find that there exist a few center nodes and small skeletons f or most oscillations. Complicated and seemingly random oscillatory patterns can be viewed as well-organized target waves propagating from center nodes along the shortest paths, and the shortest loops passing through both the center nodes and their driver nodes play the role of oscillation sources. Analyzing simple skeletons we are able to understand and predict various essential properties of the oscillations and effectively modulate the oscillations. These methods and results will give insights into pattern formation in complex networks, and provide suggestive ideas for studying and controlling oscillations in neural networks.
One successful model of interacting biological systems is the Boolean network. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function, - one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of a cell cycle network, we discover a power law memory with a more robust dynamics than the Markovian dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا