ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of hard-sphere suspension using Dynamic Light Scattering and X-Ray Photon Correlation Spectroscopy: dynamics and scaling of the Intermediate Scattering Function

56   0   0.0 ( 0 )
 نشر من قبل Vincent Arnaud Martinez
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intermediate Scattering Functions (ISFs) are measured for colloidal hard sphere systems using both Dynamic Light Scattering (DLS) and X-ray Photon Correlation Spectroscopy (XPCS). We compare the techniques, and discuss the advantages and disadvantages of each. Both techniques agree in the overlapping range of scattering vectors. We investigate the scaling behaviour found by Segre and Pusey [1] but challenged by Lurio et al. [2]. We observe a scaling behaviour over several decades in time but not in the long time regime. Moreover, we do not observe long time diffusive regimes at scattering vectors away from the peak of the structure factor and so question the existence of a long time diffusion coefficients at these scattering vectors.

قيم البحث

اقرأ أيضاً

87 - B. Ruta , Y. Chushkin , G. Monaco 2012
We use X-Ray Photon Correlation Spectroscopy to investigate the structural relaxation process in a metallic glass on the atomic length scale. We report evidence for a dynamical crossover between the supercooled liquid phase and the metastable glassy state, suggesting different origins of the relaxation process across the transition. Furthermore, using different cooling rates we observe a complex hierarchy of dynamic processes characterized by distinct aging regimes. Strong analogies with the aging dynamics of soft glassy materials, such as gels and concentrated colloidal suspensions, point at stress relaxation as a universal mechanism driving the relaxation dynamics of out-of-equilibrium systems.
We demonstrate a prototype light scattering instrument combining a frequency domain approach to the intermediate scattering function from Super-Heterodyning Doppler Velocimetry with the versatility of a standard homodyne Dynamic Light Scattering goni ometer setup for investigations over a large range of scattering vectors. Comparing to reference experiments in correlation-time domain, we show that the novel approach can determine diffusion constants and hence hydrodynamic radii with high precision and accuracy. Possible future applications are discussed shortly.
We report results of dynamic light scattering measurements of the coherent intermediate scattering function (ISF) of glasses of hard spheres for several volume fractions and a range of scattering vectors around the primary maximum of the static struc ture factor. The ISF shows a clear crossover from an initial fast decay to a slower non-stationary decay. Ageing is quantified in several different ways. However, regardless of the method chosen, the perfect aged glass is approached in a power-law fashion. In particular, the coupling between the fast and slow decays, as measured by the degree of stretching of the ISF at the crossover, also decreases algebraically with waiting time. The non-stationarity of this coupling implies that even the fastest detectable processes are themselves non-stationary.
Direct measurements of the acceleration of spheres and disks impacting granular media reveal simple power law scalings along with complex dynamics which bear the signatures of both fluid and solid behavior. The penetration depth scales linearly with impact velocity while the collision duration is constant for sufficiently large impact velocity. Both quantities exhibit power law dependence on sphere diameter and density, and gravitational acceleration. The acceleration during impact is characterized by two jumps: a rapid, velocity dependent increase upon initial contact and a similarly sharp, depth dependent decrease as the impacting object comes to rest. Examining the measured forces on the sphere in the vicinity of these features leads to a new experimentally based granular force model for collision. We discuss our findings in the context of recently proposed phenomenological models that capture qualitative dynamical features of impact but fail both quantitatively and in their inability to capture significant acceleration fluctuations that occur during penetration and which depend on the impacted material.
We demonstrate that the time evolution of the van Hove dynamical pair correlation function is governed by adiabatic forces that arise from the free energy and by superadiabatic forces that are induced by the flow of the van Hove function. The superad iabatic forces consist of drag, viscous, and structural contributions, as occur in active Brownian particles, in liquids under shear and in lane forming mixtures. For hard sphere liquids we present a power functional theory that predicts these universal force fields in quantitative agreement with our Brownian dynamics simulation results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا