ﻻ يوجد ملخص باللغة العربية
In this paper we will show how the results found in Cator and Pimentel 2009, about the Busemann functions in last-passage percolation, can be used to calculate the asymptotic distribution of the speed of a single second class particle starting from an arbitrary deterministic configuration which has a rarefaction fan, in either the totally asymetric exclusion process, or the Hammersley interacting particle process. The method will be to use the well known last-passage percolation description of the exclusion process and of the Hammersley process, and then the well known connection between second class particles and competition interfaces.
We consider the totally asymmetric simple exclusion process (TASEP) with non-random initial condition having density $rho$ on $mathbb{Z}_-$ and $lambda$ on $mathbb{Z}_+$, and a second class particle initially at the origin. For $rho<lambda$, there is
In the multi-type totally asymmetric simple exclusion process (TASEP) on the line, each site of Z is occupied by a particle labeled with some number, and two neighboring particles are interchanged at rate one if their labels are in increasing order.
In [AAV] Amir, Angel and Valk{o} studied a multi-type version of the totally asymmetric simple exclusion process (TASEP) and introduced the TASEP speed process, which allowed them to answer delicate questions about the joint distribution of the speed
We study the directed last-passage percolation model on the planar square lattice with nearest-neighbor steps and general i.i.d. weights on the vertices, outside of the class of exactly solvable models. Stationary cocycles are constructed for this pe
We prove fluctuation bounds for the particle current in totally asymmetric zero range processes in one dimension with nondecreasing, concave jump rates whose slope decays exponentially. Fluctuations in the characteristic directions have order of magn