ﻻ يوجد ملخص باللغة العربية
We report on initial results from a Spitzer program to search for very low-mass brown dwarfs in Ophiuchus. This program is an extension of an earlier study by Allers et al. which had resulted in an extraordinary success rate, 18 confirmed out of 19 candidates. Their program combined near-infrared and Spitzer photom- etry to identify objects with very cool photospheres together with circumstellar disk emission to indicate youth. Our new program has obtained deep IRAC pho- tometry of a 0.5 deg2 field that was part of the original Allers et al. study. We report 18 new candidates whose luminosities extend down to 10-4 Lcdot which sug- gests masses down to ~ 2 MJ if confirmed. We describe our selection techniques, likely contamination issues, and follow-on photometry and spectroscopy that are in progress.
The number of low-mass brown dwarfs and even free floating planetary mass objects in young nearby star-forming regions and associations is continuously increasing, offering the possibility to study the low-mass end of the IMF in greater detail. In th
We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. T
Measurement of the substellar initial mass function (IMF) in very young clusters is hampered by the possibility of the age spread of cluster members. This is particularly serious for candidate planetary mass objects (PMOs), which have a very similar
We report the complete photometric results from our Herschel study which is the first comprehensive program to search for far-infrared emission from cold dust around young brown dwarfs. We surveyed 50 fields containing 51 known or suspected brown dwa
We present results of a coronographic imaging search for circumstellar dust disks with the Adaptive Optics Near Infrared System (ADONIS) at the ESO 3.6m telescope in La Silla (Chile). 22 candidate stars, known to be orbited by a planet or to show inf