ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-Relativistic Magnetic Monopole Search with the ANITA-II Balloon-borne Radio Interferometer

65   0   0.0 ( 0 )
 نشر من قبل Dave Besson
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have conducted a search for extended energy deposition trails left by ultra-relativistic magnetic monopoles interacting in Antarctic ice. The non-observation of any satisfactory candidates in the 31 days of accumulated ANITA-II flight data results in an upper limit on the diffuse flux of relativistic monopoles. We obtain a 90% C.L. limit of order 10^{-19}/(cm^2-s-sr) for values of Lorentz boost factor 10^{10}<gamma at the anticipated energy E=10^{16} GeV. This bound is stronger than all previously published experimental limits for this kinematic range.

قيم البحث

اقرأ أيضاً

70 - S. Hoover , J. Nam , P. W. Gorham 2010
We report the observation of sixteen cosmic ray events of mean energy of 1.5 x 10^{19} eV, via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission . We present the first ultra-wideband, far-field measurements of the radio spectral density of geosynchrotron emission in the range from 300-1000 MHz. The emission is 100% linearly polarized in the plane perpendicular to the projected geomagnetic field. Fourteen of our observed events are seen to have a phase-inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon.
This work discusses the prospects of antiparticle flux measurements with the proposed PEBS detector. The project foresees long duration balloon flights at one of Earths poles at an altitude of 40 km. The sky coverage of flights at the poles is presen ted. In addition, cosmic-ray measurements at the poles (small rigidity cut-offs) give the possibility to study solar modulation effects down to energies of about 0.1 GeV. Furthermore, systematic effects due to interactions of cosmic rays in the atmosphere are important. These effects were studied with the Planetocosmics simulation software based on GEANT4 in the energy range 0.1 - 1000 GeV.
78 - Ph. von Doetinchem 2009
This thesis discusses two different approaches for the measurement of cosmic-ray antiparticles in the GeV to TeV energy range. The first part of this thesis discusses the prospects of antiparticle flux measurements with the proposed PEBS detector. The project allots long duration balloon flights at one of Earths poles at an altitude of 40 km. GEANT4 simulations were carried out which determine the atmospheric background and attenuation especially for antiparticles. The second part covers the AMS-02 experiment which will be installed in 2010 on the International Space Station at an altitude of about 400 km for about three years to measure cosmic rays without the influence of Earths atmosphere. The present work focuses on the anticoincidence counter system (ACC). The ACC is needed to reduce the trigger rate during periods of high fluxes and to reject external particles crossing the tracker from the side or particles resulting from interactions within the detector which would otherwise disturb the clean charge and momentum measurements. The last point is especially important for the measurement of antinuclei and antiparticles.
65 - H. Gast , R. Greim , T. Kirn 2009
A precision measurement of the cosmic-ray positron spectrum may help to solve the puzzle of the nature of dark matter. Pairwise annihilation of neutralinos, predicted by some supersymmetric extensions to the standard model of particle physics, may le ave a distinct feature in the cosmic-ray positron spectrum. As the available data are limited both in terms of statistics and energy range, we are developing a balloon-borne detector (PEBS) with a large acceptance of 4000 cm^2 sr. A superconducting magnet creating a field of 0.8 T and a tracking device consisting of scintillating fibers of 0.25 mm diameter with silicon photomultiplier readout will allow rigidity and charge determination to energies above 100 GeV. The dominant proton background is suppressed by the combination of an electromagnetic calorimeter and a transition radiation detector consisting of fleece layers interspersed with straw-tube proportional counters. The calorimeter uses a sandwich of tungsten and scintillating fibers that are again read out by silicon photomultipliers.
A rotating star with a monopole (or split monopole) magnetic field gives the simplest, prototype model of a rotationally driven stellar wind. Winds from compact objects, in particular neutron stars, carry strong magnetic fields with modest plasma loa ding, and develop ultra-relativistic speeds. We investigate the relativistic wind launched from a dense, gravitationally bound, atmosphere on the stellar surface. We first examine the problem analytically and then perform global kinetic plasma simulations. Our results show how the wind acceleration mechanism changes from centrifugal (magnetohydrodynamic) to electrostatic (charge-separated) depending on the parameters of the problem. The two regimes give winds with different angular distributions and different scalings with the magnetization parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا