ﻻ يوجد ملخص باللغة العربية
Our peculiar velocity with respect to the CMB rest frame is known to induce a large dipole in the CMB. However, the motion of an observer has also the effect of distorting the anisotropies at all scales, as shown by Challinor and Van Leeuwen (2002), due to aberration and Doppler effects. We propose to measure independently our local motion by using off-diagonal two-point correlation functions for high multipoles. We study the observability of the signal for temperature and polarization anisotropies. We point out that Planck can measure the velocity $beta$ with an error of about 30% and the direction with an error of about 20 degrees. This method constitutes a cross-check, which can be useful to verify that our CMB dipole is due mainly to our velocity or to disentangle the velocity from other possible intrinsic sources. Although in this paper we focus on our peculiar velocity, a similar effect would result also from other intrinsic vectorial distortion of the CMB which would induce a dipolar lensing. Measuring the off-diagonal correlation terms is therefore a test for a preferred direction on the CMB sky.
Our velocity relative to the cosmic microwave background (CMB) generates a dipole from the CMB monopole, which was accurately measured by COBE. The relative velocity also modulates and aberrates the CMB fluctuations, generating a small signature of s
The small-scale crisis, discrepancies between observations and N-body simulations, may imply suppressed matter fluctuations on subgalactic distance scales. Such a suppression could be caused by some early-universe mechanism (e.g., broken scale invari
On the assumption that quasars (QSO) and gamma-ray bursts (GRB) represent standardisable candles, we provide evidence that the Hubble constant $H_0$ adopts larger values in hemispheres aligned with the CMB dipole direction. The observation is consist
Redshift-space distortions (RSD) generically affect any spatially-dependent observable that is mapped using redshift information. The effect on the observed clustering of galaxies is the primary example of this. This paper is devoted to another examp
The merger rate of primordial black holes depends on their initial clustering. In the absence of primordial non-Gaussianity correlating short and large-scales, primordial black holes are distributed `a la Poisson at the time of their formation. Howev