ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray observation of AM Herculis in a very low state with Suzaku

150   0   0.0 ( 0 )
 نشر من قبل Yukikatsu Terada
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y.Terada




اسأل ChatGPT حول البحث

The X-ray observation of AM Her in a very low state was performed with {it Suzaku} in October 2008. One flare event with a time scale of $sim$ 3700 sec was detected at the X-ray luminosity of $6.0 times 10^{29} {rm ~erg ~sec}^{-1}$ in the 0.5 -- 10 keV band assuming at a distance of 91 pc. The X-ray spectrum is represented by a thermal plasma emission model with a temperature of $8.67_{-1.14}^{+1.31}$ keV. During the quiescence out of the flare interval, {it Suzaku} also detected significant X-rays at a luminosity of $1.7 times 10^{29} {rm ~erg ~sec}^{-1}$ in the 0.5 -- 10 keV band, showing a clear spin modulation at a period of 0.1289273(2) days at BJD 2454771.581. The X-ray spectra in the quiescence were represented by a MEKAL + Power Law (PL) model or a single CEMEKL model, which are also supported by phase-resolved analyses. A correlation between the temperature and the volume emission measure was found together with historical X-ray measurements of AM Her in various states. In order to account for a possible non-thermal emission from AM Her, particle acceleration mechanisms in the AM Her system are also discussed, including a new proposal of a shock acceleration process on the top of the accretion column.

قيم البحث

اقرأ أيضاً

This paper reports the results of Suzaku observation of the spectral variation of the black hole binary LMCX-1 in the soft state. The observationwas carried out in 2009 from July 21 to 24. the obtained net count rate was $sim$30 counts s$^{-1}$ in th e 0.5--50 keV band with $sim$10% peak-to-peak flux variation. The time-averaged X-ray spectrum cannot be described by a multi-color disk and single Compton component with its reflection, but requires additional Comptonized emissions. This double Compton component model allows a slightly larger inner radius of the multi-color disk, implying a lower spin parameter. Significant spectral evolution was observed above 8 keV along with a flux decrease on a timescale of $sim$10$^4$--10$^5$ s. By spectral fitting, we show that this behavior is well explained by changes in the hard Comptonized emission component in contrast to the maintained disk and soft Comptonized emission.
Polars (AM Herculis binaries) are a prominent class of bright soft X-ray sources, many of which were discovered with ROSAT. We present a homogenous analysis of all the pointed ROSAT PSPC observations of polars subdivided into two papers that discuss the prototype polar AM Her in detail and summarize the class properties of all other polars. We derive the high-state soft X-ray flux and short-term spectral variability of AM Her using a new detector response matrix and a confirmed flux calibration of the ROSAT PSPC below 0.28 keV. The best-fit mean single-blackbody temperature and integrated bright-phase energy flux of AM Her in its April 1991 high state are 27.2 +/- 1.0 eV and (2.6 +/- 0.6) x 10^-9 erg cm^-2s^-1, respectively. The total blackbody flux of a multi-temperature model that fits both the soft X-ray and the fluctuating far-ultraviolet components is Fbb = (4.5 +/- 1.5) x 10^-9 erg cm^-2s^-1. The total accretion luminosity at a distance of 80 pc, Lbb = (2.1 +/- 0.7) x 10^33 erg s-1, implies an accretion rate of Mdot = (2.4 +/- 0.8) x 10^-10 Msun yr^-1 for an 0.78 Msun white dwarf. The soft X-ray flux displays significant variability on time scales down to 200 ms. Correlated spectral and count-rate variations are seen in flares on time scales down to 1 s, demonstrating the heating and cooling associated with individual accretion events. Our spectral and temporal analysis provides direct evidence for the blobby accretion model and suggests a connection between the soft X-ray and the fluctuating far-ultraviolet components.
We present a simple heuristic model for the time-averaged soft X-ray temperature distribution in the accretion spot on the white dwarf in polars. The model is based on the analysis of the Chandra LETG spectrum of the prototype polar AM Her and involv es an exponential distribution of the emitting area vs. blackbody temperature a(T) = a0 exp(-T/T0). With one free parameter besides the normalization, it is mathematically as simple as the single blackbody, but is physically more plausible and fits the soft X-ray and far-ultraviolet spectral fluxes much better. The model yields more reliable values of the wavelength-integrated flux of the soft X-ray component and the implied accretion rate than reported previously.
119 - Aya Bamba 2008
Suzaku observations of a TeV unidentified (unID) source, HESS J1745-303, are presented. A possible excess of neutral iron line emission is discovered, and is likely associated with the main part of HESS J1745-303, named region A. It may be an X-ray r eflection nebula where the X-rays from previous Galactic Center (GC) activity are reflected by a molecular cloud. This result further strengthens the assumption that the molecular cloud which is spatially coincident with region A of HESS J1745-303 is located in the GC region. The TeV emission from molecular clouds is reminiscent of the diffuse TeV gamma-rays from the GC giant molecular clouds, and it could have the same emission mechanism. With deep exposure mapping observations by Suzaku, a tight upper-limit on the 2-10 keV continuum diffuse emission from region A is obtained, as 2.1x10^-13ergs s^-1cm^-2. The flux ratio between 1-10 TeV and 2-10 keV is larger than 4. Possible scenarios to reproduce wide-band spectra from keV to TeV are examined. Thermal X-rays from nearby two old supernova remnants, G359.0-0.9 and G359.1-0.5, are detected, and their emission properties are well determined in the present study with deep exposure.
We report the results from an X-ray and near-infrared observation of the Galactic black hole binary 4U 1630--47 in the very high state, performed with {it Suzaku} and IRSF around the peak of the 2012 September-October outburst. The X-ray spectrum is approximated by a steep power law, with photon index of 3.2, identifying the source as being in the very high state. A more detailed fit shows that the X-ray continuum is well described by a multi-color disc, together with thermal and non-thermal Comptonization. The inner disc appears slightly truncated by comparison with a previous high/soft state of this source, even taking into account energetic coupling between the disc and corona, although there are uncertainties due to the dust scattering correction. The near-infrared fluxes are higher than the extrapolated disc model, showing that there is a contribution from irradiation in the outer disk and/or the companion star at these wavelengths. Our X-ray spectra do not show the Doppler shifted iron emission lines indicating a baryonic jet which were seen four days previously in an XMM-Newton observation, despite the source being in a similar state. There are also no significant absorption lines from highly ionized irons as are seen in the previous high/soft state data. We show that the increased source luminosity is not enough on its own to make the wind so highly ionized as to be undetectable. This shows that the disc wind has changed in terms of its launch radius and/or density compared to the high/soft state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا