ترغب بنشر مسار تعليمي؟ اضغط هنا

Extraction of P11 Resonance from pi-N Data and Its Stability

125   0   0.0 ( 0 )
 نشر من قبل Satoshi Nakamura
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف S. X. Nakamura




اسأل ChatGPT حول البحث

An important question about resonance extraction is how much resonance poles and residues extracted from data depend on a model used for the extraction, and on the precision of data. We address this question with the dynamical coupled-channel (DCC) model developed in Excited Baryon Analysis Center (EBAC) at JLab. We focus on the P11 pi-N scattering. We examine the model-dependence of the poles by varying parameters to a large extent within the EBAC-DCC model. We find that two poles associated with the Roper resonance are fairly stable against the variation. We also develop a model with a bare nucleon, thereby examining the stability of the Roper poles against different analytic structure of the P11 amplitude below pi-N threshold. We again find a good stability of the Roper poles.



قيم البحث

اقرأ أيضاً

The neutron-neutron scattering length a_nn provides a sensitive probe of charge-symmetry breaking in the strong interaction. Here we summarize our recent efforts to use chiral perturbation theory in order to systematically relate a_nn to the shape of the neutron spectrum in the reaction pi- d --> n n gamma. In particular we show how the chiral symmetry of QCD relates this process to low-energy electroweak reactions such as p p --> d e+ nu_e. This allows us to reduce the uncertainty in the extracted a_nn (mainly due to short-distance physics in the two-nucleon system) by a factor of more than three, to <0.05 fm. We also report first results on the impact that two-nucleon mechanisms of chiral order P^4 have on the pi- d --> n n gamma neutron spectrum.
Kaon production in pion-nucleon collisions in nuclear matter is studied in the resonance model. To evaluate the in-medium modification of the reaction amplitude as a function of the baryonic density we introduce relativistic, mean-field potentials fo r the initial, final and intermediate mesonic and baryonic states. These vector and scalar potentials were calculated using the quark-meson coupling (QMC) model. The in-medium kaon production cross sections in pion-nucleon interactions for reaction channels with $Lambda$ and $Sigma$ hyperons in the final state were calculated at the baryonic densities appropriate to relativistic heavy ion collisions. Contrary to earlier work which has not allowed for the change of the cross section in medium, we find that the data for kaon production are consistent with a repulsive $K^+$-nucleus potential.
The production of eta mesons in photon- and hadron-induced reactions has been revisited in view of the recent additions of high-precision data to the world data base. Based on an effective Lagrangian approach, we have performed a combined analysis of the free and quasi-free gamma N -> eta N, N N -> N N eta, and pi N -> eta N reactions. Considering spin-1/2 and -3/2 resonances, we found that a set of above-threshold resonances {S_{11}, P_{11}, P_{13}}, with fitted mass values of about M_R=1925, 2130, and 2050 MeV, respectively, and the four-star sub-threshold P_{13}(1720) resonance reproduce best all existing data for the eta production processes in the resonance-energy region considered in this work. All three above-threshold resonances found in the present analysis are essential and indispensable for the good quality of the present fits.
The near-threshold n p -> d pi0 cross section is calculated in chiral perturbation theory to next-to-leading order in the expansion parameter sqrt{M m_pi}/Lambda_chi. At this order irreducible pion loops contribute to the relevant pion-production ope rator. While their contribution to this operator is finite, considering initial-and final-state distortions produces a linear divergence in its matrix elements. We renormalize this divergence by introducing a counterterm, whose value we choose in order to reproduce the threshold n p -> d pi0 cross section measured at TRIUMF. The energy-dependence of this cross section is then predicted in chiral perturbation theory, being determined by the production of p-wave pions, and also by energy dependence in the amplitude for the production of s-wave pions. With an appropriate choice of the counterterm, the chiral prediction for this energy dependence converges well.
The analysis of the nine 1-fold differential cross sections for the $gamma_{r,v} p to pi^+pi^-p$ photo- and electroproduction reactions obtained with the CLAS detector at Jefferson Laboratory was carried out with the goal to establish the contributin g resonances in the mass range from 1.6~GeV to 1.8~GeV. In order to describe the photo- and electroproduction data with $Q^2$-independent resonance masses and hadronic decay widths in the $Q^2$ range below 1.5~GeV$^2$, it was found that an $N(1720)3/2^+$ state is required in addition to the already well-established nucleon resonances. This work demonstrates that the combined studies of $pi^+pi^-p$ photo- and electroproduction data are vital for the observation of this resonance. The contributions from the $N(1720)3/2^+$ state and the already established $N(1720)3/2^+$ state with a mass of 1.745~GeV are well separated by their different hadronic decays to the $pi Delta$ and $rho p$ final states and the different $Q^2$-evolution of their photo-/electroexcitation amplitudes. The $N(1720)3/2^+$ state is the first recently established baryon resonance for which the results on the $Q^2$-evolution of the photo-/electrocouplings have become available. These results are important for the exploration of the nature of the ``missing baryon resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا