ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolutionary Approach to Test Generation for Functional BIST

416   0   0.0 ( 0 )
 نشر من قبل Dmitry Ivanov
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the paper, an evolutionary approach to test generation for functional BIST is considered. The aim of the proposed scheme is to minimize the test data volume by allowing the devices microprogram to test its logic, providing an observation structure to the system, and generating appropriate test data for the given architecture. Two methods of deriving a deterministic test set at functional level are suggested. The first method is based on the classical genetic algorithm with binary and arithmetic crossover and mutation operators. The second one uses genetic programming, where test is represented as a sequence of microoperations. In the latter case, we apply two-point crossover based on exchanging test subsequences and mutation implemented as random replacement of microoperations or operands. Experimental data of the program realization showing the efficiency of the proposed methods are presented.



قيم البحث

اقرأ أيضاً

This study suggests a new approach to EEG data classification by exploring the idea of using evolutionary computation to both select useful discriminative EEG features and optimise the topology of Artificial Neural Networks. An evolutionary algorithm is applied to select the most informative features from an initial set of 2550 EEG statistical features. Optimisation of a Multilayer Perceptron (MLP) is performed with an evolutionary approach before classification to estimate the best hyperparameters of the network. Deep learning and tuning with Long Short-Term Memory (LSTM) are also explored, and Adaptive Boosting of the two types of models is tested for each problem. Three experiments are provided for comparison using different classifiers: one for attention state classification, one for emotional sentiment classification, and a third experiment in which the goal is to guess the number a subject is thinking of. The obtained results show that an Adaptive Boosted LSTM can achieve an accuracy of 84.44%, 97.06%, and 9.94% on the attentional, emotional, and number datasets, respectively. An evolutionary-optimised MLP achieves results close to the Adaptive Boosted LSTM for the two first experiments and significantly higher for the number-guessing experiment with an Adaptive Boosted DEvo MLP reaching 31.35%, while being significantly quicker to train and classify. In particular, the accuracy of the nonboosted DEvo MLP was of 79.81%, 96.11%, and 27.07% in the same benchmarks. Two datasets for the experiments were gathered using a Muse EEG headband with four electrodes corresponding to TP9, AF7, AF8, and TP10 locations of the international EEG placement standard. The EEG MindBigData digits dataset was gathered from the TP9, FP1, FP2, and TP10 locations.
Evolutionary algorithms (EA) have been widely accepted as efficient solvers for complex real world optimization problems, including engineering optimization. However, real world optimization problems often involve uncertain environment including nois y and/or dynamic environments, which pose major challenges to EA-based optimization. The presence of noise interferes with the evaluation and the selection process of EA, and thus adversely affects its performance. In addition, as presence of noise poses challenges to the evaluation of the fitness function, it may need to be estimated instead of being evaluated. Several existing approaches attempt to address this problem, such as introduction of diversity (hyper mutation, random immigrants, special operators) or incorporation of memory of the past (diploidy, case based memory). However, these approaches fail to adequately address the problem. In this paper we propose a Distributed Population Switching Evolutionary Algorithm (DPSEA) method that addresses optimization of functions with noisy fitness using a distributed population switching architecture, to simulate a distributed self-adaptive memory of the solution space. Local regression is used in the pseudo-populations to estimate the fitness. Successful applications to benchmark test problems ascertain the proposed methods superior performance in terms of both robustness and accuracy.
The present work provides a new approach to evolve ligand structures which represent possible drug to be docked to the active site of the target protein. The structure is represented as a tree where each non-empty node represents a functional group. It is assumed that the active site configuration of the target protein is known with position of the essential residues. In this paper the interaction energy of the ligands with the protein target is minimized. Moreover, the size of the tree is difficult to obtain and it will be different for different active sites. To overcome the difficulty, a variable tree size configuration is used for designing ligands. The optimization is done using a novel Neighbourhood Based Genetic Algorithm (NBGA) which uses dynamic neighbourhood topology. To get variable tree size, a variable-length version of the above algorithm is devised. To judge the merit of the algorithm, it is initially applied on the well known Travelling Salesman Problem (TSP).
Analogy plays an important role in creativity, and is extensively used in science as well as art. In this paper we introduce a technique for the automated generation of cross-domain analogies based on a novel evolutionary algorithm (EA). Unlike exist ing work in computational analogy-making restricted to creating analogies between two given cases, our approach, for a given case, is capable of creating an analogy along with the novel analogous case itself. Our algorithm is based on the concept of memes, which are units of culture, or knowledge, undergoing variation and selection under a fitness measure, and represents evolving pieces of knowledge as semantic networks. Using a fitness function based on Gentners structure mapping theory of analogies, we demonstrate the feasibility of spontaneously generating semantic networks that are analogous to a given base network.
Within this paper, the exploration of an evolutionary approach to an alternative CellLineNet: a convolutional neural network adept at the classification of epithelial breast cancer cell lines, is presented. This evolutionary algorithm introduces cont rol variables that guide the search of architectures in the search space of inverted residual blocks, bottleneck blocks, residual blocks and a basic 2x2 convolutional block. The promise of EvoCELL is predicting what combination or arrangement of the feature extracting blocks that produce the best model architecture for a given task. Therein, the performance of how the fittest model evolved after each generation is shown. The final evolved model CellLineNet V2 classifies 5 types of epithelial breast cell lines consisting of two human cancer lines, 2 normal immortalized lines, and 1 immortalized mouse line (MDA-MB-468, MCF7, 10A, 12A and HC11). The Multiclass Cell Line Classification Convolutional Neural Network extends our earlier work on a Binary Breast Cancer Cell Line Classification model. This paper presents an on-going exploratory approach to neural network architecture design and is presented for further study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا