ﻻ يوجد ملخص باللغة العربية
We report the detection of more than 48 velocity-resolved ground rotational state transitions of H2(16)O, H2(18)O, and H2(17)O - most for the first time - in both emission and absorption toward Orion KL using Herschel/HIFI. We show that a simple fit, constrained to match the known emission and absorption components along the line of sight, is in excellent agreement with the spectral profiles of all the water lines. Using the measured H2(18)O line fluxes, which are less affected by line opacity than their H2(16)O counterparts, and an escape probability method, the column densities of H2(18)O associated with each emission component are derived. We infer total water abundances of 7.4E-5, 1.0E-5, and 1.6E-5 for the plateau, hot core, and extended warm gas, respectively. In the case of the plateau, this value is consistent with previous measures of the Orion-KL water abundance as well as those of other molecular outflows. In the case of the hot core and extended warm gas, these values are somewhat higher than water abundances derived for other quiescent clouds, suggesting that these regions are likely experiencing enhanced water-ice sublimation from (and reduced freeze-out onto) grain surfaces due to the warmer dust in these sources.
We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules (weeds), the HF spectrum shows a P-Cy
We have examined methanol emission from Orion KL with of the {em Herschel}/HIFI instrument, and detected two methanol bands centered at 524 GHz and 1061 GHz. The 524 GHz methanol band (observed in HIFI band 1a) is dominated by the isolated $Delta$J$=
We present the first high spectral resolution observations of Orion KL in the frequency ranges 1573.4 - 1702.8 GHz (band 6b) and 1788.4 - 1906.8 GHz (band 7b) obtained using the HIFI instrument on board the Herschel Space Observatory. We characterize
We present a comprehensive analysis of a broad band spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This surv
We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a