ﻻ يوجد ملخص باللغة العربية
The connections between the X(5)-models (the original X(5) using an infinite square well, X(5)-$beta^8$, X(5)-$beta^6$, X(5)-$beta^4$, and X(5)-$beta^2$), based on particular solutions of the geometrical Bohr Hamiltonian with harmonic potential in the $gamma$ degree of freedom, and the interacting boson model (IBM) are explored. This work is the natural extension of the work presented in [1] for the E(5)-models. For that purpose, a quite general one- and two-body IBM Hamiltonian is used and a numerical fit to the different X(5)-models energies is performed, later on the obtained wave functions are used to calculate B(E2) transition rates. It is shown that within the IBM one can reproduce well the results for energies and B(E2) transition rates obtained with all these X(5)-models, although the agreement is not so impressive as for the E(5)-models. From the fitted IBM parameters the corresponding energy surface can be extracted and it is obtained that, surprisingly, only the X(5) case corresponds in the moderate large N limit to an energy surface very close to the one expected for a critical point, while the rest of models seat a little farther.
The case of U(5)--$hat{Q}(chi)cdothat{Q}(chi)$ mixing in the configuration-mixed Interacting Boson Model is studied in its mean-field approximation. Phase diagrams with analytical and numerical solutions are constructed and discussed. Indications for
Rotational $SU(3)$ algebraic symmetry continues to generate new results in the shell model (SM). Interestingly, it is possible to have multiple $SU(3)$ algebras for nucleons occupying an oscillator shell $eta$. Several different aspects of the multip
We propose a method to incorporate the coupling between shape and pairing collective degrees of freedom in the framework of the interacting boson model (IBM), based on the nuclear density functional theory. To account for pairing vibrations, a boson-
Recent interest in spectroscopic factors for single-neutron transfer in low-spin states of the even-odd Xenon $^{125,127,129.131}$Xe and even-odd Tellurium, $^{123,125,127,129,131}$Te isotopes stimulated us to study these isotopes within the frame wo
Background: The lead region, Po, Pb, Hg, and Pt, shows up the presence of coexisting structures having different deformation and corresponding to different particle-hole configurations in the Shell Model language. Purpose: We intend to study the im