Employing a rigorous theoretical method for the construction of exact many-electron ground states we prove that interactions can be employed to tune a bare dispersive band structure such that it develops a flat band. Thereby we show that pentagon chain polymers with electron densities above half filling may be designed to become ferromagnetic or half metallic.
We provide the first evidence for coherence and Rabi oscillations of spin-solitons pinned by the local breaking of translational symmetry in isotropic Heisenberg chains (simple antiferromagnetic-N{e}el or spin-Peierls).We show that these correlated s
pin systems made of hundreds of coupled spin bear an overall spin S=1/2 and can be manipulated as a single spin. This is clearly contrary to all known spin-qubits which are paramagnetic centres, highly diluted to prevent decoherence. These results offer an alternative approach for spin-qubits paving the way for the implementation of a new type of quantum computer.
In magnetic Weyl semimetals, where magnetism breaks time-reversal symmetry, large magnetically sensitive anomalous transport responses are anticipated that could be useful for topological spintronics. The identification of new magnetic Weyl semimetal
s is therefore in high demand, particularly since in these systems Weyl node configurations may be easily modified using magnetic fields. Here we explore experimentally the magnetic semimetal PrAlGe, and unveil a direct correspondence between easy-axis Pr ferromagnetism and anomalous Hall and Nernst effects. With sizes of both the anomalous Hall conductivity and Nernst effect in good quantitative agreement with first principles calculations, we identify PrAlGe as a system where magnetic fields can connect directly to Weyl nodes via the Pr magnetization. Furthermore, we find the predominantly easy-axis ferromagnetic ground state co-exists with a low density of nanoscale textured magnetic domain walls. We describe how such nanoscale magnetic textures could serve as a local platform for tunable axial gauge fields of Weyl fermions.
For a general class of conducting polymers with arbitrary large unit cell and different on-site Coulomb repulsion values on different type of sites, I demonstrate in exact terms the emergence possibility of an upper, interaction created effective fla
t band. This last appears as a consequence of a kinetic energy quench accompanied by a strong interaction energy decrease, and leads to a non-saturated ferromagnetic state. This ordered state clearly differs from the known flat-band ferromagnetism. This is because it emerges in a system without bare flat bands, requires inhomogeneous on-site Coulomb repulsions values, and possesses non-zero lower interaction limits at the emergence of the ordered phase.
We discuss twisted bilayer graphene (TBG) based on a theorem of flat band ferromagnetism put forward by Mielke and Tasaki. According to this theorem, ferromagnetism occurs if the single particle density matrix of the flat band states is irreducible a
nd we argue that this result can be applied to the quasi-flat bands of TBG that emerge around the charge-neutrality point for twist angles around the magic angle $thetasim1.05^circ$. We show that the density matrix is irreducible in this case, thus predicting a ferromagnetic ground state for neutral TBG ($n=0$). We then show that the theorem can also be applied only to the flat conduction or valence bands, if the substrate induces a single-particle gap at charge neutrality. Also in this case, the corresponding density matrix turns out to be irreducible, leading to ferromagnetism at half filling ($n=pm2$).
We demonstrate that delta-doping can be used to create a dimensionally confined region of metallic ferromagnetism in an antiferromagnetic (AF) manganite host, without introducing any explicit disorder due to dopants or frustration of spins. Delta-dop
ed carriers are inserted into a manganite superlattice (SL) by a digital-synthesis technique. Theoretical consideration of these additional carriers show that they cause a local enhancement of ferromagnetic (F) double-exchange with respect to AF superexchange, resulting in local canting of the AF spins. This leads to a highly modulated magnetization, as measured by polarized neutron reflectometry. The spatial modulation of the canting is related to the spreading of charge from the doped layer, and establishes a fundamental length scale for charge transfer, transformation of orbital occupancy and magnetic order in these manganites. Furthermore, we confirm the existence of the canted, AF state as was predicted by de Gennes [P.-G. de Gennes, Phys. Rev. 118, 141 (1960)], but had remained elusive.