ترغب بنشر مسار تعليمي؟ اضغط هنا

Random Dirichlet environment viewed from the particle in dimension $dge 3$

152   0   0.0 ( 0 )
 نشر من قبل Christophe Sabot
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Christophe Sabot




اسأل ChatGPT حول البحث

We consider random walks in random Dirichlet environment (RWDE) which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On ${mathbb Z}^d$, RWDE are parameterized by a 2d-uplet of positive reals called weights. In this paper, we characterize for $dge 3$ the weights for which there exists an absolutely continuous invariant probability for the process viewed from the particle. We can deduce from this result and from [27] a complete description of the ballistic regime for $dge 3$.



قيم البحث

اقرأ أيضاً

110 - Christophe Sabot 2010
We consider random walks in random Dirichlet environment (RWDE) which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On $Z^d$, RWDE are parameterized by a $2d$- uplet of positive reals. We prove that for all values of the parameters, RWDE are transient in dimension $dge 3$. We also prove that the Green function has some finite moments and we characterize the finite moments. Our result is more general and applies for example to finitely generated symmetric transient Cayley graphs. In terms of reinforced random walks it implies that directed edge reinforced random walks are transient for $dge 3$.
116 - Christophe Sabot 2009
We consider random walks in a random environment that is given by i.i.d. Dirichlet distributions at each vertex of Z^d or, equivalently, oriented edge reinforced random walks on Z^d. The parameters of the distribution are a 2d-uplet of positive real numbers indexed by the unit vectors of Z^d. We prove that, as soon as these weights are nonsymmetric, the random walk in this random environment is transient in a direction with positive probability. In dimension 2, this result can be strenghened to an almost sure directional transience thanks to the 0-1 law from [ZM01]. Our proof relies on the property of stability of Dirichlet environment by time reversal proved in [Sa09]. In a first part of this paper, we also give a probabilistic proof of this property as an alternative to the change of variable computation used in that article.
194 - Enrique Andjel 2011
We prove a shape theorem for the set of infected individuals in a spatial epidemic model with 3 states (susceptible-infected-recovered) on ${mathbb Z}^d,dge 3$, when there is no extinction of the infection. For this, we derive percolation estimates ( using dynamic renormalization techniques) for a locally dependent random graph in correspondence with the epidemic model.
We prove quenched hydrodynamic limit under hyperbolic time scaling for bounded attractive particle systems on $Z$ in random ergodic environment. Our result is a strong law of large numbers, that we illustrate with various examples.
Exponential single server queues with state dependent arrival and service rates are considered which evolve under influences of external environments. The transitions of the queues are influenced by the environments state and the movements of the env ironment depend on the status of the queues (bi-directional interaction). The structure of the environment is constructed in a way to encompass various models from the recent Operation Research literature, where a queue is coupled e.g. with an inventory or with reliability issues. With a Markovian joint queueing-environment process we prove separability for a large class of such interactive systems, i.e. the steady state distribution is of product form and explicitly given: The queue and the environment processes decouple asymptotically and in steady state. For non-separable systems we develop ergodicity criteria via Lyapunov functions. By examples we show principles for bounding throughputs of non-separable systems by throughputs of two separable systems as upper and lower bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا