ﻻ يوجد ملخص باللغة العربية
We present a multi-frequency Electron Spin Resonance (ESR) study in the range of 4 GHz to 420 GHz of the quasi-one-dimensional, non-dimerized, quarter-filled Mott insulators, delta-(EDT-TTF-CONMe_2)_2X (X=AsF_6, Br). In the high temperature orthorhombic phase above T~190 K, the magnitude and the temperature dependence of the high temperature spin susceptibility are described by a S = 1/2 Heisenberg antiferromagnetic chain with J_AsF6=298 K and J_Br=474 K coupling constants for X=AsF_6 and Br respectively. We estimate from the temperature dependence of the line width an exchange anisotropy, J/J of ~2 * 10^{-3}. The frequency dependence of the line width and the g-shift have an unusual quadratic dependence in all crystallographic orientations that we attribute to an antisymmetric exchange (Dzyaloshinskii--Moriya) interaction.
We studied the magnetic properties, in particular dynamics, of the correlated spins associated with natural defects in the organic spin chain compounds ($o$-DMTTF)$_2X$ ($X$ = Br, Cl) by means of electron spin resonance (ESR) spectroscopy. Both mater
The electron spin resonance spectrum of a quasi 1D S=1/2 antiferromagnet K2CuSO4Br2 was found to demonstrate an energy gap and a doublet of resonance lines in a wide temperature range between the Curie--Weiss and Ne`{e}l temperatures. This type of ma
We study the electron spin resonance (ESR) of low-dimensional spin systems at high temperature, and test the Kubo-Tomita theory of exchange narrowing. In finite-size systems (molecular magnets), we found a double-peak resonance which strongly differs
We measured X-band electron-spin resonance of single crystalline sodium vanadate doped with lithium, Na_{1-x}Li_xV_2O_5 for 0 < x < 1.3% . The phase transition into a dimerized phase that is observed at 34 K in the undoped compound, was found to be s
The $1/4$-filled organic compound, $delta$-(EDT-TTF-CONMe$_{2}$)$_{2}$AsF$_6$ is a frustrated two-dimensional triangular magnetic system as shown by high-frequency (111.2 and 222.4 GHz) electron spin resonance (ESR) and structural data in the literat