ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence of solutions for Hamiltonian field theories by the Hamilton-Jacobi technique

159   0   0.0 ( 0 )
 نشر من قبل Danilo Bruno
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Danilo Bruno




اسأل ChatGPT حول البحث

The paper is devoted to prove the existence of a local solution of the Hamilton-Jacobi equation in field theory, whence the general solution of the field equations can be obtained. The solution is adapted to the choice of the submanifold where the initial data of the field equations are assigned. Finally, a technique to obtain the general solution of the field equations, starting from the given initial manifold, is deduced.



قيم البحث

اقرأ أيضاً

227 - Danilo Bruno 2007
A new approach leading to the formulation of the Hamilton-Jacobi equation for field theories is investigated within the framework of jet-bundles and multi-symplectic manifolds. An algorithm associating classes of solutions to given sets of boundary c onditions of the field equations is provided. The paper also puts into evidence the intrinsic limits of the Hamilton-Jacobi method as an algorithm to determine families of solutions of the field equations, showing how the choice of the boundary data is often limited by compatibility conditions.
By using the Hamilton-Jacobi [HJ] framework the topological theories associated with Euler and Pontryagin classes are analyzed. We report the construction of a fundamental $HJ$ differential where the characteristic equations and the symmetries of the theory are identified. Moreover, we work in both theories with the same phase space variables and we show that in spite of Pontryagin and Euler classes share the same equations of motion their symmetries are different. In addition, we report all HJ Hamiltonians and we compare our results with other formulations reported in the literature.
104 - B. Konya , G. Levai , Z. Papp 1997
We propose two ways for determining the Greens matrix for problems admitting Hamiltonians that have infinite symmetric tridiagonal (i.e. Jacobi) matrix form on some basis representation. In addition to the recurrence relation comming from the Jacobi- matrix, the first approach also requires the matrix elements of the Greens operator between the first elements of the basis. In the second approach the recurrence relation is solved directly by continued fractions and the solution is continued analytically to the whole complex plane. Both approaches are illustrated with the non-trivial but calculable example of the D-dimensional Coulomb Greens matrix. We give the corresponding formulas for the D-dimensional harmonic oscillator as well.
By using the Hamilton-Jacobi [HJ] framework the three dimensional Palatini theory plus a Chern-Simons term [PCS] is analyzed. We report the complete set of $HJ$ Hamiltonians and a generalized $HJ$ differential from which all symmetries of the theory are identified. Moreover, we show that in spite of PCS Lagrangian produces Einsteins equations, the generalized $HJ$ brackets depend on a Barbero-Immirzi like parameter. In addition we complete our study by performing a canonical covariant analysis, and we construct a closed and gauge invariant two form that encodes the symplectic geometry of the covariant phase space.
243 - Luca Asselle 2016
In this paper we compute all the smooth solutions to the Hamilton-Jacobi equation associated with the horocycle flow. This can be seen as the Euler-Lagrange flow (restricted to the energy level set $E^{-1}(frac 12)$) defined by the Tonelli Lagrangian $L:Tmathbb Hrightarrow mathbb R$ given by (hyperbolic) kinetic energy plus the standard magnetic potential. The method we use is to look at Lagrangian graphs that are contained in the level set ${H=frac 12}$, where $H:T^*mathbb Hrightarrow mathbb R$ denotes the Hamiltonian dual to $L$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا