ترغب بنشر مسار تعليمي؟ اضغط هنا

Anderson Transitions: Criticality, Symmetries, and Topologies

198   0   0.0 ( 0 )
 نشر من قبل Alexander D. Mirlin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The physics of Anderson transitions between localized and metallic phases in disordered systems is reviewed. We focus on the character of criticality as well as on underlying symmetries and topologies that are crucial for understanding phase diagrams and the critical behavior.



قيم البحث

اقرأ أيضاً

Conduction through materials crucially depends on how ordered they are. Periodically ordered systems exhibit extended Bloch waves that generate metallic bands, whereas disorder is known to limit conduction and localize the motion of particles in a me dium. In this context, quasiperiodic systems, which are neither periodic nor disordered, reveal exotic conduction properties, self-similar wavefunctions, and critical phenomena. Here, we explore the localization properties of waves in a novel family of quasiperiodic chains obtained when continuously interpolating between two paradigmatic limits: the Aubry-Andre model, famous for its metal-to-insulator transition, and the Fibonacci chain, known for its critical nature. Using both theoretical analysis and experiments on cavity-polariton devices, we discover that the Aubry-Andre model evolves into criticality through a cascade of band-selective localization/delocalization transitions that iteratively shape the self-similar critical wavefunctions of the Fibonacci chain. Our findings offer (i) a unique new insight into understanding the criticality of quasiperiodic chains, (ii) a controllable knob by which to engineer band-selective pass filters, and (iii) a versatile experimental platform with which to further study the interplay of many-body interactions and dissipation in a wide range of quasiperiodic models.
Spectral statistics of disordered systems encode Thouless and Heisenberg time scales whose ratio determines whether the system is chaotic or localized. Identifying similarities between system size and disorder strength scaling of Thouless time for di sordered quantum many-body systems with results for 3D and 5D Anderson models, we argue that the two-parameter scaling breaks down in the vicinity of the transition to the localized phase signalling subdiffusive dynamics.
103 - H. Obuse , K. Yakubo 2004
We study the level-spacing distribution function $P(s)$ at the Anderson transition by paying attention to anomalously localized states (ALS) which contribute to statistical properties at the critical point. It is found that the distribution $P(s)$ fo r level pairs of ALS coincides with that for pairs of typical multifractal states. This implies that ALS do not affect the shape of the critical level-spacing distribution function. We also show that the insensitivity of $P(s)$ to ALS is a consequence of multifractality in tail structures of ALS.
The boundary condition dependence of the critical behavior for the three dimensional Anderson transition is investigated. A strong dependence of the scaling function and the critical conductance distribution on the boundary conditions is found, while the critical disorder and critical exponent are found to be independent of the boundary conditions.
Exponential localization of wavefunctions in lattices, whether in real or synthetic dimensions, is a fundamental wave interference phenomenon. Localization of Bloch-type functions in space-periodic lattice, triggered by spatial disorder, is known as Anderson localization and arrests diffusion of classical particles in disordered potentials. In time-periodic Floquet lattices, exponential localization in a periodically driven quantum system similarly arrests diffusion of its classically chaotic counterpart in the action-angle space. Here we demonstrate that nonlinear optical response allows for clear detection of the disorder-induced phase transition between delocalized and localized states. The optical signature of the transition is the emergence of symmetry-forbidden even-order harmonics: these harmonics are enabled by Anderson-type localization and arise for sufficiently strong disorder even when the overall charge distribution in the field-free system spatially symmetric. The ratio of even to odd harmonic intensities as a function of disorder maps out the phase transition even when the associated changes in the band structure are negligibly small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا