ترغب بنشر مسار تعليمي؟ اضغط هنا

Privacy in geo-social networks: proximity notification with untrusted service providers and curious buddies

123   0   0.0 ( 0 )
 نشر من قبل Dario Freni
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A major feature of the emerging geo-social networks is the ability to notify a user when one of his friends (also called buddies) happens to be geographically in proximity with the user. This proximity service is usually offered by the network itself or by a third party service provider (SP) using location data acquired from the users. This paper provides a rigorous theoretical and experimental analysis of the existing solutions for the location privacy problem in proximity services. This is a serious problem for users who do not trust the SP to handle their location data, and would only like to release their location information in a generalized form to participating buddies. The paper presents two new protocols providing complete privacy with respect to the SP, and controllable privacy with respect to the buddies. The analytical and experimental analysis of the protocols takes into account privacy, service precision, and computation and communication costs, showing the superiority of the new protocols compared to those appeared in the literature to date. The proposed protocols have also been tested in a full system implementation of the proximity service.



قيم البحث

اقرأ أيضاً

In modern information systems different information features, about the same individual, are often collected and managed by autonomous data collection services that may have different privacy policies. Answering many end-users legitimate queries requ ires the integration of data from multiple such services. However, data integration is often hindered by the lack of a trusted entity, often called a mediator, with which the services can share their data and delegate the enforcement of their privacy policies. In this paper, we propose a flexible privacy-preserving data integration approach for answering data integration queries without the need for a trusted mediator. In our approach, services are allowed to enforce their privacy policies locally. The mediator is considered to be untrusted, and only has access to encrypted information to allow it to link data subjects across the different services. Services, by virtue of a new privacy requirement, dubbed k-Protection, limiting privacy leaks, cannot infer information about the data held by each other. End-users, in turn, have access to privacy-sanitized data only. We evaluated our approach using an example and a real dataset from the healthcare application domain. The results are promising from both the privacy preservation and the performance perspectives.
Peer to peer marketplaces such as AirBnB enable transactional exchange of services directly between people. In such platforms, those providing a service (hosts in AirBnB) are faced with various choices. For example in AirBnB, although some amenities in a property (attributes of the property) are fixed, others are relatively flexible and can be provided without significant effort. Providing an amenity is usually associated with a cost. Naturally different sets of amenities may have a different gains for a host. Consequently, given a limited budget, deciding which amenities (attributes) to offer is challenging. In this paper, we formally introduce and define the problem of Gain Maximization over Flexible Attributes (GMFA). We first prove that the problem is NP-hard and show that identifying an approximate algorithm with a constant approximate ratio is unlikely. We then provide a practically efficient exact algorithm to the GMFA problem for the general class of monotonic gain functions, which quantify the benefit of sets of attributes. As the next part of our contribution, we focus on the design of a practical gain function for GMFA. We introduce the notion of frequent-item based count (FBC), which utilizes the existing tuples in the database to define the notion of gain, and propose an efficient algorithm for computing it. We present the results of a comprehensive experimental evaluation of the proposed techniques on real dataset from AirBnB and demonstrate the practical relevance and utility of our proposal.
Privacy is an increasingly important aspect of data publishing. Reasoning about privacy, however, is fraught with pitfalls. One of the most significant is the auxiliary information (also called external knowledge, background knowledge, or side inform ation) that an adversary gleans from other channels such as the web, public records, or domain knowledge. This paper explores how one can reason about privacy in the face of rich, realistic sources of auxiliary information. Specifically, we investigate the effectiveness of current anonymization schemes in preserving privacy when multiple organizations independently release anonymized data about overlapping populations. 1. We investigate composition attacks, in which an adversary uses independent anonymized releases to breach privacy. We explain why recently proposed models of limited auxiliary information fail to capture composition attacks. Our experiments demonstrate that even a simple instance of a composition attack can breach privacy in practice, for a large class of currently proposed techniques. The class includes k-anonymity and several recent variants. 2. On a more positive note, certain randomization-based notions of privacy (such as differential privacy) provably resist composition attacks and, in fact, the use of arbitrary side information. This resistance enables stand-alone design of anonymization schemes, without the need for explicitly keeping track of other releases. We provide a precise formulation of this property, and prove that an important class of relaxations of differential privacy also satisfy the property. This significantly enlarges the class of protocols known to enable modular design.
In online social networks (OSN), users quite usually disclose sensitive information about themselves by publishing messages. At the same time, they are (in many cases) unable to properly manage the access to this sensitive information due to the foll owing issues: i) the rigidness of the access control mechanism implemented by the OSN, and ii) many users lack of technical knowledge about data privacy and access control. To tackle these limitations, in this paper, we propose a dynamic, transparent and privacy-driven access control mechanism for textual messages published in OSNs. The notion of privacy-driven is achieved by analyzing the semantics of the messages to be published and, according to that, assessing the degree of sensitiveness of their contents. For this purpose, the proposed system relies on an automatic semantic annotation mechanism that, by using knowledge bases and linguistic tools, is able to associate a meaning to the information to be published. By means of this annotation, our mechanism automatically detects the information that is sensitive according to the privacy requirements of the publisher of data, with regard to the type of reader that may access such data. Finally, our access control mechanism automatically creates sanitiz
Private collection of statistics from a large distributed population is an important problem, and has led to large scale deployments from several leading technology companies. The dominant approach requires each user to randomly perturb their input, leading to guarantees in the local differential privacy model. In this paper, we place the various approaches that have been suggested into a common framework, and perform an extensive series of experiments to understand the tradeoffs between different implementation choices. Our conclusion is that for the core problems of frequency estimation and heavy hitter identification, careful choice of algorithms can lead to very effective solutions that scale to millions of users
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا