ﻻ يوجد ملخص باللغة العربية
We assume that the early universe is homogeneous, anisotropic, and is dominated by the mutually BPS 2255 intersecting branes of M theory. The spatial directions are all taken to be toroidal. Using analytical and numerical methods, we study the evolution of such an universe. We find that, asymptotically, three spatial directions expand to infinity and the remaining spatial directions reach stabilised values. Any stabilised values can be obtained by a fine tuning of initial brane densities. We give a physical description of the stabilisation mechanism. Also, from the perspective of four dimensional spacetime, the effective four dimensional Newtons constant G_4 is now time varying. Its time dependence will follow from explicit solutions. We find in the present case that, asymptotically, G_4 exhibits characteristic log periodic oscillations.
A period of slow contraction with equation of state w > 1, known as an ekpyrotic phase, has been shown to flatten and smooth the universe if it begins the phase with small perturbations. In this paper, we explore how robust and powerful the ekpyrotic
We provide ${cal N}=1$ superfield description of BPS backgrounds in six-dimensional supergravity (6D SUGRA) with 3-branes, which is compactified on a two-dimensional space. The brane terms induce the localized fluxes. We find a useful gauge in which
Assuming that superstring theory is the fundamental theory which unifies all forces of Nature at the quantum level, I argue that there are key limitations on the applicability of effective field theory techniques in describing early universe cosmology.
We study the dynamics of a timelike vector field which violates Lorentz invariance when the background spacetime is in an accelerating phase in the early universe. It is shown that a timelike vector field is difficult to realize an inflationary phase
We investigate how non-linear scalar field theories respond to point sources. Taking the symmetron as a specific example of such a theory, we solve the non-linear equation of motion in one spatial dimension for (i) an isolated point source and (ii) t