ﻻ يوجد ملخص باللغة العربية
Equation of state of He-4 hcp crystals with vacancies is determined at zero temperature using the diffusion Monte Carlo technique, an exact ground state zero-temperature method. This allows us to extract the formation enthalpy and isobaric formation energy of a single vacancy in otherwise perfect helium solid. Results were obtained for pressures up to 160 bar. The isobaric formation energy is found to reach a minimum near 57 bar where it is equal to $10.5pm 1.2$ K. At the same pressure, the vacancy formation volume exhibits a maximum and reaches the volume of the unit cell. This pressure coincides with the pressure interval over which a peak in the supersolid fraction of He-4 was observed in a recent experiment.
We calculate the dislocation glide mobility in solid $^4$He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role t
We calculate the effect of a heat current on transporting $^3$He dissolved in superfluid $^4$He at ultralow concentration, as will be utilized in a proposed experimental search for the electric dipole moment of the neutron (nEDM). In this experiment,
We analyze the complex phenomenology of the Non-Classical Rotational Inertia (NCRI) observed at low temperature in solid $^4$He within the context of a two dimensional Berezinski-Kosterlitz-Thouless transition in a premelted $^4$He film at the grain
Motivated by a proposed experimental search for the electric dipole moment of the neutron (nEDM) utilizing neutron-$^3$He capture in a dilute solution of $^3$He in superfluid $^4 $He, we derive the transport properties of dilute solutions in the regi
The dynamic structure function $S(k,omega)$ informs about the dispersion and damping of excitations. We have recently (Phys. Rev. B {bf 97}, 184520 (2018)) compared experimental results for $S(k,omega)$ from high-precision neutron scattering experime