ترغب بنشر مسار تعليمي؟ اضغط هنا

Off-Axis Gamma-Ray Burst Afterglow Modeling Based On A Two-Dimensional Axisymmetric Hydrodynamics Simulation

132   0   0.0 ( 0 )
 نشر من قبل Andrew MacFadyen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually decelerate and become non-relativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper we present light curves for off-axis observers covering the long-term evolution of the blast wave calculated from a high resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We find that observable jet breaks can be delayed for up to several weeks for off-axis observers, potentially leading to overestimation of the beaming corrected total energy. When using our off-axis light curves to create synthetic Swift X-ray data, we find that jet breaks are likely to remain hidden in the data. We also confirm earlier results in the literature finding that only a very small number of local Type Ibc supernovae can harbor an orphan afterglow.



قيم البحث

اقرأ أيضاً

109 - L. Izzo , K. Auchettl , J. Hjorth 2020
Long-duration gamma-ray bursts (GRBs) are almost unequivocally associated with very energetic, broad-lined supernovae (SNe) of Type Ic-BL. While the gamma-ray emission is emitted in narrow jets, the SN emits radiation isotropically. Therefore, some S N Ic-BL not associated with GRBs have been hypothesized to arise from events with inner engines such as off-axis GRBs or choked jets. Here we present observations of the nearby ($d = 120$ Mpc) SN 2020bvc (ASAS-SN 20bs) which support this scenario. textit{Swift} UVOT observations reveal an early decline (up to two days after explosion) while optical spectra classify it as a SN Ic-BL with very high expansion velocities ($approx$ 70,000 km/s), similar to that found for the jet-cocoon emission in SN 2017iuk associated with GRB 171205A. Moreover, textit{Swift} X-Ray Telescope and textit{CXO} X-ray Observatory detected X-ray emission only three days after the SN and decaying onwards, which can be ascribed to an afterglow component. Cocoon and X-ray emission are both signatures of jet-powered GRBs. In the case of SN 2020bvc, we find that the jet is off axis (by $approx$ 23 degrees), as also indicated by the lack of early ($approx 1$ day) X-ray emission which explains why no coincident GRB was detected promptly or in archival data. These observations suggest that SN 2020bvc is the first orphan GRB detected through its associated SN emission.
208 - Jheng-Cyun Chen , Yuji Urata , 2021
We investigated the radio properties of the host galaxy of X-ray flash, XRF020903, which is the best example for investigating of the off-axis origin of gamma-ray bursts(GRBs). Dust continuum at 233 GHz and CO are observed using the Atacama Large mil limeter/submillimeter array. The molecular gas mass derived by applying the metalicity-dependent CO-to-H$_{2}$ conversion factor matches the global trend along the redshift and stellar mass of the GRB host galaxies. The estimated gas depletion timescale (pertaining to the potential critical characteristics of GRB host galaxies) is equivalent to those of GRBs and super-luminous supernova hosts in the same redshift range. These properties of the XRF020903 host galaxy observed in radio resemble those of GRB host galaxies, thereby supporting the identical origin of XRF020903 and GRBs.
We demonstrate that gamma-ray burst afterglow spectra and light curves can be calculated for arbitrary explosion and radiation parameters by scaling the peak flux and the critical frequencies connecting different spectral regimes. Only one baseline c alculation needs to be done for each jet opening angle and observer angle. These calculations are done numerically using high-resolution relativistic hydrodynamical afterglow blast wave simulations which include the two-dimensional dynamical features of expanding and decelerating afterglow blast waves. Any light curve can then be generated by applying scaling relations to the baseline calculations. As a result, it is now possible to fully fit for the shape of the jet break, e.g. at early time X-ray and optical frequencies. In addition, late-time radio calorimetry can be improved since the general shape of the transition into the Sedov-Taylor regime is now known for arbitrary explosion parameters so the exact moment when the Sedov-Taylor asymptote is reached in the light curve is no longer relevant. When calculating the baselines, we find that the synchrotron critical frequency and the cooling break frequency are strongly affected by the jet break. The synchrotron break temporal slope quickly drops to the steep late time Sedov-Taylor slope, while the cooling break first steepens then rises to meet the level of its shallow late time asymptote.
We present new radio and optical data, including very long baseline interferometry, as well as archival data analysis, for the luminous decades-long radio transient FIRST J141918.9+394036. The radio data reveal a synchrotron self-absorption peak arou nd 0.3 GHz and a radius of $1.2pm0.5$ mas ($0.5pm0.2$ pc) 26 years post-discovery, indicating a blastwave energy $sim5 times 10^{50}$ erg. The optical spectrum shows a broad [OIII]$lambda$4959,5007 emission-line that may indicate collisional-excitation in the host galaxy, but its association with the transient cannot be ruled out. The properties of the host galaxy are suggestive of a massive stellar progenitor that formed at low metallicity. Based on the radio light curve, blastwave velocity, energetics, nature of the host galaxy and transient rates we find that the properties of FIRST J1419+39 are most consistent with long gamma-ray burst (LGRB) afterglows. Other classes of (optically-discovered) stellar explosions as well as neutron star mergers are disfavored, and invoking any exotic scenario may not be necessary. It is therefore likely that FIRST J1419+39 is an off-axis LGRB afterglow (as suggested by Law et al. and Marcote et al.), and under this premise the inverse beaming fraction is found to be $f_b^{-1}simeq280^{+700}_{-200}$, corresponding to an average jet half-opening angle $<theta_j>simeq5^{+4}_{-2}$ degrees (68% confidence), consistent with previous estimates. From the volumetric rate we predict that surveys with the VLA, ASKAP and MeerKAT will find a handful of FIRST J1419+39-like events over the coming years.
We present the results of numerical simulations of the prompt emission of short-duration gamma-ray bursts. We consider emission from the relativistic jet, the mildly relativistic cocoon, and the non-relativistic shocked ambient material. We find that the cocoon material is confined between off-axis angles 15<theta<45 degrees and gives origin to X-ray transients with a duration of a few to ~10 seconds, delayed by a few seconds from the time of the merger. We also discuss the distance at which such transients can be detected, finding that it depends sensitively on the assumptions that are made about the radiation spectrum. Purely thermal cocoon transients are detectable only out to a few Mpc, Comptonized transients can instead be detected by the FERMI GBM out to several tens of Mpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا