ترغب بنشر مسار تعليمي؟ اضغط هنا

On ground-state instability in two-dimensional antiferromagnetic systems

69   0   0.0 ( 0 )
 نشر من قبل Kosuke Odagiri
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the stability of the antiferromagnetic ground state in two spatial dimensions. We start with a general analysis, based on Gribovs current-conservation techniques, of the bosonic modes in systems with magnetic order. We argue that the Goldstone $phi$ and Higgs $h$ modes mix in antiferromagnetic systems, and this leads to an effective $hhphi$ three-point interaction. We then analyze the instability of the antiferromagnetic system in two spatial dimensions by studying the non-perturbative behaviour of the Higgs boson self-energy using the Dyson--Schwinger equations. The ground state turns out to be unstable for all values of the three-point coupling. We interpret this as being due to the formation of a (high-$T_C$) superconducting condensate. The carrier doping dependence of the energy gap has a general behaviour that is consistent with high-$T_C$ superconductivity. Superconductivity co-exists with antiferromagnetic order for large magnetization, or small doping.

قيم البحث

اقرأ أيضاً

131 - Lianyi He , Pengfei Zhuang 2009
We investigate fermionic superconductivity with mismatched Fermi surfaces in a general two-band system. The exchange interaction between the two bands changes significantly the stability structure of the pairing states. The Sarma state with two gaple ss Fermi surfaces which is always unstable in single-band systems, can be the stable ground state in two-band systems. To realize a visible mismatch window for the stable Sarma state, two conditions should be satisfied: a nonzero inter-band exchange interaction and a large asymmetry between the two bands.
Anomalous metallic behavior, marked by a saturating finite resistivity much lower than the Drude estimate, has been observed in a wide range of two-dimensional superconductors. Utilizing the electrostatically gated LaAlO3/SrTiO3 interface as a versat ile platform for superconductor-metal quantum phase transitions, we probe variations in the gate, magnetic field, and temperature to construct a phase diagram crossing from superconductor, anomalous metal, vortex liquid, to Drude metal states, combining longitudinal and Hall resistivity measurements. We find that the anomalous metal phases induced by gating and magnetic field, although differing in symmetry, are connected in the phase diagram and exhibit similar magnetic field response approaching zero temperature. Namely, within a finite regime of the anomalous metal state, the longitudinal resistivity linearly depends on field while the Hall resistivity diminishes, indicating an emergent particle-hole symmetry. The universal behavior highlights the uniqueness of the quantum bosonic metallic state, distinct from bosonic insulators and vortex liquids.
NpCoGe, the neptunium analogue of the ferromagnetic superconductor UCoGe, has been investigated by dc-magnetization, ac-susceptibility, specific heat, electrical resistivity, Hall effect, 237Np Moessbauer spectroscopy and LSDA calculations. NpCoGe ex hibits an antiferromagnetic ground state with a Neel temperature TN = 13 K and an average ordered magnetic moment <mNp> = 0.80 mB. The magnetic phase diagram has been determined and shows that the antiferromagnetic structure is destroyed by the application of a magnetic field (around 3 T). The value of the isomer shift suggests a Np3+ charge state (configuration 5f4). A high Sommerfeld coefficient value for NpCoGe (170 mJ mol-1K-2) is inferred from specific heat. LSDA calculations indicate strong magnetic anisotropy and easy magnetization along the c-axis. Moessbauer data and calculated exchange interactions support the possible occurrence of an elliptical spin spiral structure in NpCoGe. The comparison with NpRhGe and uranium analogues suggests the leading role of 5f-d hybridization, the rather delocalized character of 5f electrons in NpCoGe and the possible proximity of NpRuGe or NpFeGe to a magnetic quantum critical point.
69 - Amit Keren , Amit Kanigel , 2006
We report charge density measurements, using NMR, in the superconducting compound (Ca_{x}La_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu_3O_{y}, which has two independent variables x (family) and y (oxygen). For underdoped samples we find the rate at which holes are introduced into the plane upon oxygenation to be family-independent. In contrast, not all carriers contribute to either antiferromagnetic or superconducting order parameters. This result is consistent with a two fluid phenomenology or intrinsic mesoscopic inhomogeneities in the bulk. We also discuss the impact of weak-chemical-disorder on T_{c}.
We investigate the antiferromagnetic (AF) order in the d-wave superconducting (SC) state at high magnetic fields. A two-dimensional model with on-site repulsion U, inter-site attractive interaction V and antiferromagnetic exchange interaction J is so lved using the mean field theory. For finite values of U and J, a first order transition occurs from the normal state to the FFLO state, while the FFLO-BCS phase transition is second order, consistent with the experimental results in CeCoIn_5. Although the BCS-FFLO transition is continuous, the Neel temperature of AF order is discontinuous at the phase boundary because the AF order in the FFLO state is induced by the Andreev bound state localized in the zeros of FFLO order parameter, while the AF order hardly occurs in the uniform BCS state. The spatial structure of the magnetic moment is investigated for the commensurate AF state as well as for the incommensurate AF state. The influence of the spin fluctuations is discussed for both states. Since the fluctuations are enhanced in the normal state for incommensurate AF order, this AF order can be confined in the FFLO state. The experimental results in CeCoIn_5 are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا