ﻻ يوجد ملخص باللغة العربية
We demonstrate here a controllable variation in the Casimir force. Changes in the force of up to 20% at separations of ~100 nm between Au and AgInSbTe (AIST) surfaces were achieved upon crystallization of an amorphous sample of AIST. This material is well known for its structural transformation, which produces a significant change in the optical properties and is exploited in optical data storage systems. The finding paves the way to the control of forces in nanosystems, such as micro- or nanoswitches by stimulating the phase change transition via localized heat sources.
A stable suspension of nanoscale particles due to the Casimir force is of great interest for many applications such as sensing, non-contract nano-machines. However, the suspension properties are difficult to change once the devices are fabricated. Va
We investigate repulsive Casimir force between slabs containing left-handed materials with controllable electromagnetic properties. The sign of Casimir force is determined by the electric and magnetic properties of the materials, and it is shown that
Microparticles including paraffin are currently used for textiles coating in order to deaden thermal shocks. We will show that polymer nanoparticles embedded in those microsized capsules allow for decreasing the thermal conductivity of the coating an
Chalcogenide alloys are materials of interest for optical recording and non-volatile memories. We perform ab-initio molecular dynamics simulations aiming at shading light onto the structure of amorphous Ge2Sb2Te5 (GST), the prototypical material in t
Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at am