ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse multi-mode effects on the performance of photon-photon gates

48   0   0.0 ( 0 )
 نشر من قبل Christoph Simon
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The multi-mode character of quantum fields imposes constraints on the implementation of high-fidelity quantum gates between individual photons. So far this has only been studied for the longitudinal degree of freedom. Here we show that effects due to the transverse degrees of freedom significantly affect quantum gate performance. We also discuss potential solutions, in particular separating the two photons in the transverse direction.

قيم البحث

اقرأ أيضاً

We consider the propagation of classical and non-classical light in multi-mode optical waveguides. We focus on the evolution of the few-photon correlation functions, which, much like the light-intensity distribution in such systems, evolve in a perio dic manner, culminating in the revival of the initial correlation pattern at the end of each period. It is found that when the input state possesses non trivial symmetries, the correlation revival period can be longer than that of the intensity, and thus the same intensity pattern can display different correlation patterns. We experimentally demonstrate this effect for classical, pseudo-thermal light, and compare the results with the predictions for non-classical, quantum light.
We study the quantum properties of the polarization of the light produced in type II spontaneous parametric down-conversion in the framework of a multi-mode model valid in any gain regime. We show that the the microscopic polarization entanglement of photon pairs survives in the high gain regime (multi-photon regime), in the form of nonclassical correlation of all the Stokes operators describing polarization degrees of freedom.
We experimentally show that two-photon path-entangled states can be coherently manipulated by multi-mode interference in multi-mode waveguides. By measuring the output two-photon spatial correlation function versus the phase of the input state, we sh ow that multi-mode waveguides perform as nearly-ideal multi-port beam splitters at the quantum level, creating a large variety of entangled and separable multi-path two-photon states.
Entangled two-photon absorption (ETPA) has recently become a topic of lively debate, mainly due to the apparent inconsistencies in the experimentally-reported ETPA cross sections of organic molecules. In this work, we provide a thorough experimental study of ETPA in the organic molecules Rhodamine B (RhB) and Zinc Tetraphenylporphirin (ZnTPP). The goal of this contribution is twofold: on one hand, it seeks to reproduce the results of previous experimental reports and, on the other, it aims to determine the effects of different temporal correlations -- introduced as a controllable time-delay between the photons to be absorbed -- on the strength of the ETPA signal. In our experiment, the samples are excited by entangled pairs produced by type-I SPDC, with a spectral distribution centered at 810 nm. Surprisingly, and contrary to what was expected, the time delay did not produce in our experiments any systematic change in the cross-sections when monitoring the ETPA signal using a transmission measurement scheme. As a plausible cause of this unexpected result, we argue that the photon-pair flux, typically-used in these experiments, is not sufficient to promote the two-photon absorption process in these molecules. This suggests that the actual absorption cross-section values are lower than those previously reported, and therefore do not lead to a measurable ETPA effect for the transmission method.
395 - Y. J. Lu , R. L. Campbell , 2003
The concept of mode locking in laser is applied to a two-photon state with frequency entanglement. Cavity enhanced parametric down-conversion is found to produce exactly such a state. The mode-locked two-photon state exhibits a comb-like correlation function. An unbalanced Hong-Ou-Mandel type interferometer is used to measure the correlation function. A revival of the typical interference dip is observed. We will discuss schemes for engineering of quantum states in time domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا