ترغب بنشر مسار تعليمي؟ اضغط هنا

A Lightweight Field Cage for a Large TPC Prototype for the ILC

232   0   0.0 ( 0 )
 نشر من قبل Klaus Dehmelt
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed and constructed the field cage of a prototype Time Projection Chamber for research and development studies for a detector at the International Linear Collider. This prototype has an inner diameter of 72 cm and a length of 61 cm. The design of the field cage wall was optimized for a low material budget of 1.21 % of a radiation length and a drift field homogeneity of Delta(E)/(E) less or equal 10^-4. Since November 2008 the prototype has been part of a comprehensive test beam setup at DESY and used as a test chamber for the development of Micro Pattern Gas Detector based readout devices.

قيم البحث

اقرأ أيضاً

A time projection chamber (TPC) is a strong candidate for the central tracker of the international linear collider (ILC) experiment and we have been conducting a series of cosmic ray experiments under a magnetic field up to 4 T, using a small prototy pe TPC with a replaceable readout device: multi-wire proportional chamber (MWPC) or gas electron multiplier (GEM). We first confirmed that the MWPC readout could not be a fall-back option of the ILC-TPC under a strong axial magnetic field of 4 T since its spatial resolution suffered severely from the so called E x B effect in the vicinity of the wire planes. The GEM readout, on the other hand, was found to be virtually free from the E x B effect as had been expected and gave the resolution determined by the transverse diffusion of the drift electrons (diffusion limited). Furthermore, GEMs allow a wider choice of gas mixtures than MWPCs. Among the gases we tried so far a mixture of Ar-CF4-isobutane, in which MWPCs could be prone to discharges, seems promising as the operating gas of the ILC-TPC because of its small diffusion constant especially under a strong magnetic field. We report the measured drift properties of this mixture including the diffusion constant as a function of the electric field and compare them with the predictions of Magboltz. Also presented is the spatial resolution of a GEM-based ILC-TPC estimated from the measurement with the prototype.
A high-pressure xenon gas time projection chamber, with a unique cellular readout structure based on electroluminescence, has been developed for a large-scale neutrinoless double-beta decay search. In order to evaluate the detector performance and va lidate its design, a 180~L size prototype is being constructed and its commissioning with partial detector has been performed. The obtained energy resolution at 4.0~bar is 1.73 $pm$ 0.07% (FWHM) at 511 keV. The energy resolution at the $^{136}$Xe neutrinoless double-beta decay Q-value is estimated to be between 0.79 and 1.52% (FWHM) by extrapolation. Reconstructed event topologies show patterns peculiar to track end-point which can be used to distinguish $0 ubetabeta$ signals from gamma-ray backgrounds.
66 - M. Berger , M. Ball (1 2017
A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost $4pi$. The high density of hits on a given particle track facilitates the task of pattern recognition i n a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC).
A combination Time Projection Chamber-Cherenkov prototype detector has been developed as part of the Detector R&D Program for a future Electron Ion Collider. The prototype was tested at the Fermilab test beam facility to provide a proof of principle to demonstrate that the detector is able to measure particle tracks and provide particle identification information within a common detector volume. The TPC portion consists of a 10x10x10cm3 field cage, which delivers charge from tracks to a 10x10cm2 quadruple GEM readout. Tracks are reconstructed by interpolating the hit position of clusters on an array of 2x10mm2 zigzag pads The Cherenkov component consists of a 10x10cm2 readout plane segmented into 3x3 square pads, also coupled to a quadruple GEM. As tracks pass though the drift volume of the TPC, the generated Cherenkov light is able to escape through sparsely arranged wires making up one side of the field cage, facing the CsI photocathode of the Cherenkov detector. The Cherenkov detector is thus operated in a windowless, proximity focused configuration for high efficiency. Pure CF4 is used as the working gas for both detector components, mainly due to its transparency into the deep UV, as well as its high N0. Results from the beam test, as well as results on its particle id capabilities will be discussed.
We have developed a gating foil for the time projection chamber envisaged as a central tracker for the international linear collider experiment. It has a structure similar to the Gas Electron Multiplier (GEM) with a higher optical aperture ratio and functions as an ion gate without gas amplification. The transmission rate for electrons was measured in a counting mode for a wide range of the voltages applied across the foil using an $^{55}$Fe source and a laser in the absence of a magnetic field. The blocking power of the foil against positive ions was estimated from the electron transmissions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا