ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic calculations of the spectra of ultra high energy cosmic ray nuclei. II. The general case of background radiation

92   0   0.0 ( 0 )
 نشر من قبل Roberto Aloisio
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the problem of ultra high energy nuclei propagation in extragalactic background radiations. The present paper is the continuation of the accompanying paper I where we have presented three new analytic methods to calculate the fluxes and spectra of ultra high energy cosmic ray nuclei, both primary and secondary, and secondary protons. The computation scheme in this paper is based on the analytic solution of coupled kinetic equations, which takes into account the continuous energy losses due to the expansion of the universe and pair-production, together with photo-disintegration of nuclei. This method includes in the most natural way the production of secondary nuclei in the process of photo-disintegration of the primary nuclei during their propagation through extragalactic background radiations. In paper I, in order to present the suggested analytical schemes of calculations, we have considered only the case of the cosmic microwave background radiation, in the present paper we generalize this computation to all relevant background radiations, including infra-red and visible/ultra-violet radiations, collectively referred to as extragalactic background light. The analytic solutions allow transparent physical interpretation of the obtained spectra. Extragalactic background light plays an important role at intermediate energies of ultra high energy cosmic ray nuclei. The most noticeable effect of the extragalactic background light is the low-energy tail in the spectrum of secondary nuclei.



قيم البحث

اقرأ أيضاً

We present a systematic study of different methods for the analytic calculation of ultra-high energy nuclei diffuse spectra. Nuclei propagating in the intergalactic space are photo-disintegrated and decrease their Lorentz factor due to the interactio n with cosmic microwave background and extragalactic background light. We calculate the evolution trajectories in the backward time, that describe how atomic mass number $A$ and Lorentz factor $Gamma$ change with redshift $z$. Three methods of spectra calculations are investigated and compared: {it (i)} trajectory method, {it(ii)} kinetic equation combined with trajectory calculations and {it (iii)} coupled kinetic equations. We believe that these three methods exhaust at least the principal possibilities for any analytic solution of the problem. In the most straightforward method {it(i)} only trajectory calculations are used to connect the observed nuclei flux with the production rate of primary (accelerated) nuclei $A_0$. In the second method {it (ii)} the flux (space density) of primary nuclei, and secondary nuclei and protons are calculated with the help of kinetic equation and trajectories are used only to determine the generation rates of these nuclei. The third method {it (iii)} consists in solving the complete set of coupled kinetic equations, written starting with primary nuclei $A_0$, then for $A_0-1$ etc down to the $A$ of interest. The solution of the preceding equation gives the generation rate for the one which follows. An important element of the calculations for all methods is the systematic use of Lorentz factor instead of energy. We consider here the interaction of nuclei only with the cosmic microwave background, this case is particularly suitable for understanding the physical results.
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charg e identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to $sim 10^{14}$ eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an $E^{-2.66 pm 0.04}$ power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/$n$ energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be $0.080 pm 0.025 $(stat.)$ pm 0.025 $(sys.) at $sim $800 GeV/$n$, in good agreement with a recent result from the first CREAM flight.
168 - Yoshiyuki Inoue 2013
While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick popula tion may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10^{-12} erg/cm^2/s at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.
If ultra-high-energy cosmic rays originate from extragalactic sources, the offsets of their arrival directions from these sources imply an upper limit on the strength of the extragalactic magnetic field. The Pierre Auger Collaboration has recently re ported that anisotropy in the arrival directions of cosmic rays is correlated with several types of extragalactic objects. If these cosmic rays originate from these objects, they imply a limit on the extragalactic magnetic field strength of B < 0.7-2.2 x 10^-9 (lambda_B / 1 Mpc)^-1/2 G for coherence lengths lambda_B < 100 Mpc and B < 0.7-2.2 x 10^-10 G at larger scales. This is comparable to existing upper limits at lambda_B = 1 Mpc, and improves on them by a factor 4-12 at larger scales. The principal source of uncertainty in our results is the unknown cosmic-ray composition.
361 - W. Painter , A. Haungs , T. Huber 2019
Development of the Silicon photomultiplier Elementary Cell Add-on camera (SiECA) has provided extensive information regarding the use of SiPMs for future cosmic ray detection systems. We present the technical aspects of sensor readout development uti lizing Citiroc ASIC chips from Weeroc controlled by a Xilinx FPGA to process and package events from four 64 channel Hamamatsu MPPC S13361 arrays generating 128 frame events with an integration time of 2.5ms (parameters are based on JEM-EUSO geometry but can be easily adjusted). With single photon counting capability, SiECA proves SiPM are viable sensors to replace Multi-Anode PhotoMultiplier Tubes in future devices, especially when high luminosity exposure is possible potentially damaging MAPMT based systems. Complementary to the technical aspects, computational and analysis methods for sensor array characterization and in depth device flat-fielding are presented. Provided channel by channel biasing, in comparison to uniform biasing with MAPMTs, fine tuning of operating parameters with MPPC arrays allows for substantial improvements in detector and signal uniformity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا