ﻻ يوجد ملخص باللغة العربية
Technical concepts are presented that improve the selfconsistent treatment of vector-mesons in a hot and dense medium. First applications concern an interacting gas of pions and rho mesons. As an extension of earlier studies we thereby include RPA-type vertex corrections and further use dispersion relations in order to calculate the real part of the vector-meson selfenergy. An improved projection method preserves the four transversality of the vector-meson polarisation tensor throughout the selfconsistent calculations, thereby keeping the scheme void of kinematical singularities.
We investigate probing the hot and dense nuclear matter with strange vector mesons ($K^*, bar{K}^*$). Our analysis is based on PHSD which incorporates partonic and hadronic dof and describes the full dynamics of HICs. This allows to study the $K^*$ a
We investigate vector meson spectral functions at finite temperature and density through the soft wall model, a bottom-up holographic approach to QCD. We find narrow resonances at small values of the parameters, becoming broader as temperature and de
It is reported on a global analysis of hard vector-meson electroproduction which is based on the handbag factorization. The generalized parton distributions are constructed from their forward limits with the help of double distributions and the parto
The magnetic and quadrupole moments of the vector and axial-vector mesons containing heavy quark are estimated within the light cone sum rules method. Our predictions on magnetic moments for the vector mesons are compared with the results obtained by other approaches.
An important first step in the program of hadronization of chiral quark models is the bosonization in meson and diquark channels. This procedure is presented at finite temperatures and chemical potentials for the SU(2) flavor case of the NJL model wi