ترغب بنشر مسار تعليمي؟ اضغط هنا

The Allen Telescope Array Twenty-centimeter Survey - A 690-Square-Degree, 12-Epoch Radio Dataset - I: Catalog and Long-Duration Transient Statistics

107   0   0.0 ( 0 )
 نشر من قبل Steve Croft
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch (12 visits), 690 square degree radio image and catalog at 1.4GHz. The survey is designed to detect rare, very bright transients as well as to verify the capabilities of the ATA to form large mosaics. The combined image using data from all 12 ATATS epochs has RMS noise sigma = 3.94mJy / beam and dynamic range 180, with a circular beam of 150 arcsec FWHM. It contains 4408 sources to a limiting sensitivity of S = 20 mJy / beam. We compare the catalog generated from this 12-epoch combined image to the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency, and find that we can measure source positions to better than ~20 arcsec. For sources above the ATATS completeness limit, the median flux density is 97% of the median value for matched NVSS sources, indicative of an accurate overall flux calibration. We examine the effects of source confusion due to the effects of differing resolution between ATATS and NVSS on our ability to compare flux densities. We detect no transients at flux densities greater than 40 mJy in comparison with NVSS, and place a 2-sigma upper limit on the transient rate for such sources of 0.004 per square degree. These results suggest that the > 1 Jy transients reported by Matsumura et al. (2009) may not be true transients, but rather variable sources at their flux density threshold.



قيم البحث

اقرأ أيضاً

We present our second paper on the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch, ~700 sq. deg. radio image and catalog at 1.4 GHz. The survey is designed to detect rare, bright transients as well as to commission the ATAs wid e-field survey capabilities. ATATS explores the challenges of multi-epoch transient and variable source surveys in the domain of dynamic range limits and changing (u,v) coverage. Here we present images made using data from the individual epochs, as well as a revised image combining data from all ATATS epochs. The combined image has RMS noise 3.96 mJy / beam, with a circular beam of 150 arcsec FWHM. The catalog, generated using a false detection rate algorithm, contains 4984 sources, and is >90% complete to 37.9 mJy. The catalogs generated from snapshot images of the individual epochs contain between 1170 and 2019 sources over the 564 sq. deg. area in common to all epochs. The 90% completeness limits of the single epoch catalogs range from 98.6 to 232 mJy. We compare the catalog generated from the combined image to those from individual epochs, and from the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency. We are able to place new constraints on the transient population: fewer than 6e-4 transients / sq. deg., for transients brighter than 350 mJy with characteristic timescales of minutes to days. This strongly rules out an astronomical origin for the ~1 Jy sources reported by Matsumura et al. (2009), based on their stated rate of 3.1e-3 / sq. deg.
The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5-year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on time scales of days to years. We present here observations of a 10 deg^2 region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4-month period and has an rms flux density between 200 and 250 microJy. This represents a deeper image by a factor of 4 to 8 than we will achieve over the entire 10,000 deg^2. We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ~100$ new flat spectrum radio sources; we project that when completed PiGSS will identify 10^4 flat spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.
We report the results of an 87 square-degree point-source survey centered at R.A. 5h30m, decl. -55 deg. taken with the South Pole Telescope (SPT) at 1.4 and 2.0 mm wavelengths with arc-minute resolution and milli-Jansky depth. Based on the ratio of f lux in the two bands, we separate the detected sources into two populations, one consistent with synchrotron emission from active galactic nuclei (AGN) and one consistent with thermal emission from dust. We present source counts for each population from 11 to 640 mJy at 1.4 mm and from 4.4 to 800 mJy at 2.0 mm. The 2.0 mm counts are dominated by synchrotron-dominated sources across our reported flux range; the 1.4 mm counts are dominated by synchroton-dominated sources above ~15 mJy and by dust-dominated sources below that flux level. We detect 141 synchrotron-dominated sources and 47 dust-dominated sources at S/N > 4.5 in at least one band. All of the most significantly detected members of the synchrotron-dominated population are associated with sources in previously published radio catalogs. Some of the dust-dominated sources are associated with nearby (z << 1) galaxies whose dust emission is also detected by the Infrared Astronomy Satellite (IRAS). However, most of the bright, dust-dominated sources have no counterparts in any existing catalogs. We argue that these sources represent the rarest and brightest members of the population commonly referred to as sub-millimeter galaxies (SMGs). Because these sources are selected at longer wavelengths than in typical SMG surveys, they are expected to have a higher mean redshift distribution and may provide a new window on galaxy formation in the early universe.
We present a catalog of emissive point sources detected in the SPT-SZ survey, a contiguous 2530-square-degree area surveyed with the South Pole Telescope (SPT) from 2008 - 2011 in three bands centered at 95, 150, and 220 GHz. The catalog contains 484 5 sources measured at a significance of 4.5 sigma or greater in at least one band, corresponding to detections above approximately 9.8, 5.8, and 20.4 mJy in 95, 150, and 220 GHz, respectively. Spectral behavior in the SPT bands is used for source classification into two populations based on the underlying physical mechanisms of compact, emissive sources that are bright at millimeter wavelengths: synchrotron radiation from active galactic nuclei and thermal emission from dust. The latter population includes a component of high-redshift sources often referred to as submillimeter galaxies (SMGs). In the relatively bright flux ranges probed by the survey, these sources are expected to be magnified by strong gravitational lensing. The survey also contains sources consistent with protoclusters, groups of dusty galaxies at high redshift undergoing collapse. We cross-match the SPT-SZ catalog with external catalogs at radio, infrared, and X-ray wavelengths and identify available redshift information. The catalog splits into 3980 synchrotron-dominated and 865 dust-dominated sources and we determine a list of 506 SMGs. Ten sources in the catalog are identified as stars. We calculate number counts for the full catalog, and synchrotron and dusty components, using a bootstrap method and compare our measured counts with models. This paper represents the third and final catalog of point sources in the SPT-SZ survey.
We provide an overview of the science benefits of combining information from the Square Kilometre Array (SKA) and the Large Synoptic Survey Telescope (LSST). We first summarise the capabilities and timeline of the LSST and overview its science goals. We then discuss the science questions in common between the two projects, and how they can be best addressed by combining the data from both telescopes. We describe how weak gravitational lensing and galaxy clustering studies with LSST and SKA can provide improved constraints on the causes of the cosmological acceleration. We summarise the benefits to galaxy evolution studies of combining deep optical multi-band imaging with radio observations. Finally, we discuss the excellent match between one of the most unique features of the LSST, its temporal cadence in the optical waveband, and the time resolution of the SKA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا