ﻻ يوجد ملخص باللغة العربية
In this work we describe an efficient implementation of a hierarchy of algorithms for the decomposition of dense matrices over the field with two elements (GF(2)). Matrix decomposition is an essential building block for solving dense systems of linear and non-linear equations and thus much research has been devoted to improve the asymptotic complexity of such algorithms. In this work we discuss an implementation of both well-known and improved algorithms in the M4RI library. The focus of our discussion is on a new variant of the M4RI algorithm - denoted MMPF in this work -- which allows for considerable performance gains in practice when compared to the previously fastest implementation. We provide performance figures on x86_64 CPUs to demonstrate the viability of our approach.
We describe an efficient implementation of a hierarchy of algorithms for multiplication of dense matrices over the field with two elements (GF(2)). In particular we present our implementation -- in the M4RI library -- of Strassen-Winograd matrix mult
We introduce a consistent and efficient method to construct self-dual codes over $GF(q)$ with symmetric generator matrices from a self-dual code over $GF(q)$ of smaller length where $q equiv 1 pmod 4$. Using this method, we improve the best-known min
Four recursive constructions of permutation polynomials over $gf(q^2)$ with those over $gf(q)$ are developed and applied to a few famous classes of permutation polynomials. They produce infinitely many new permutation polynomials over $gf(q^{2^ell})$
Updating a linear least squares solution can be critical for near real-time signalprocessing applications. The Greville algorithm proposes a simple formula for updating the pseudoinverse of a matrix A $in$ R nxm with rank r. In this paper, we explici
The orientation of the magnetic field (B-field) in the filamentary dark cloud GF 9 was traced from the periphery of the cloud into the L1082C dense core that contains the low-mass, low-luminosity Class 0 young stellar object (YSO) GF 9-2 (IRAS 20503+