ﻻ يوجد ملخص باللغة العربية
This investigation is devoted to the solutions of Einsteins field equations for a circularly symmetric anisotropic fluid, with kinematic self-similarity of the first kind, in $(2+1)$-dimensional spacetimes. In the case where the radial pressure vanishes, we show that there exists a solution of the equations that represents the gravitational collapse of an anisotropic fluid, and this collapse will eventually form a black hole, even when it is constituted by the phantom energy.
A C-metric type solution for general relativity with cosmological constant is presented in 2+1 dimensions. It is interpreted as a three-dimensional black hole accelerated by a strut. Positive values of the cosmological constant are admissible too. So
We study the evolution of an anisotropic shear-free fluid with heat flux and kinematic self-similarity of the second kind. We found a class of solution to the Einstein field equations by assuming that the part of the tangential pressure which is expl
Interested in the collapse of a radiating star, we study the temporal evolution of a fluid with heat flux and bulk viscosity, including anisotropic pressure. As a starting point, we adopt an initial configuration that satisfies the regularities condi
We discuss the prospects of gravitational lensing of gravitational waves (GWs) coming from core-collapse supernovae (CCSN). As the CCSN GW signal can only be detected from within our own Galaxy and the local group by current and upcoming ground-based
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (