ترغب بنشر مسار تعليمي؟ اضغط هنا

Roles of adiabatic and nonadiabatic spin transfer torques on magnetic domain wall motion

266   0   0.0 ( 0 )
 نشر من قبل Sug-Bong Choe
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electric current exerts torques-so-called spin transfer torques (STTs)-on magnetic domain walls (DWs), resulting in DW motion. At low current densities, the STTs should compete against disorders in ferromagnetic nanowires but the nature of the competition remains poorly understood. By achieving two-dimensional contour maps of DW speed with respect to current density and magnetic field, here we visualize unambiguously distinct roles of the two STTs-adiabatic and nonadiabatic-in scaling behaviour of DW dynamics arising from the competition. The contour maps are in excellent agreement with predictions of a generalized scaling theory, and all experimental data collapse onto a single curve. This result indicates that the adiabatic STT becomes dominant for large current densities, whereas the nonadiabatic STT-playing the same role as a magnetic field-subsists at low current densities required to make emerging magnetic nanodevices practical.



قيم البحث

اقرأ أيضاً

236 - Junji Fujimoto 2020
Electron transport in magnetic orders and the magnetic orders dynamics have a mutual dependence, which provides the key mechanisms in spin-dependent phenomena. Recently, antiferromagnetic orders are focused on as the magnetic order, where current-ind uced spin-transfer torques, a typical effect of electron transport on the magnetic order, have been debatable mainly because of the lack of an analytic derivation based on quantum field theory. Here, we construct the microscopic theory of spin-transfer torques on the slowly-varying staggered magnetization in antiferromagnets with weak canting. In our theory, the electron is captured by bonding/antibonding states, each of which is the eigenstate of the system, doubly degenerates, and spatially spreads to sublattices because of electron hopping. The spin of the eigenstates depends on the momentum in general, and a nontrivial spin-momentum locking arises for the case with no site inversion symmetry, without considering any spin-orbit couplings. The spin current of the eigenstates includes an anomalous component proportional to a kind of gauge field defined by derivatives in momentum space and induces the adiabatic spin-transfer torques on the magnetization. Unexpectedly, we find that one of the nonadiabatic torques has the same form as the adiabatic spin-transfer torque, while the obtained forms for the adiabatic and nonadiabatic spin-transfer torques agree with the phenomenological derivation based on the symmetry consideration. This finding suggests that the conventional explanation for the spin-transfer torques in antiferromagnets should be changed. Our microscopic theory provides a fundamental understanding of spin-related physics in antiferromagnets.
Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velo city depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.
Antiferromagnetic materials are outstanding candidates for next generation spintronic applications, because their ultrafast spin dynamics makes it possible to realize several orders of magnitude higher-speed devices than conventional ferromagnetic ma terials1. Though spin-transfer torque (STT) is a key for electrical control of spins as successfully demonstrated in ferromagnetic spintronics, experimental understanding of STT in antiferromagnets has been still lacking despite a number of pertinent theoretical studies2-5. Here, we report experimental results on the effects of STT on domain-wall (DW) motion in antiferromagnetically-coupled ferrimagnets. We find that non-adiabatic STT acts like a staggered magnetic field and thus can drive DWs effectively. Moreover, the non-adiabaticity parameter {beta} of STT is found to be significantly larger than the Gilbert damping parameter {alpha}, challenging our conventional understanding of the non-adiabatic STT based on ferromagnets as well as leading to fast current-induced antiferromagnetic DW motion. Our study will lead to further vigorous exploration of STT for antiferromagnetic spin textures for fundamental physics on spin-charge interaction as wells for efficient electrical control of antiferromagnetic devices.
We investigate ferrimagnetic domain wall dynamics induced by circularly polarized spin waves theoretically and numerically. We find that the direction of domain wall motion depends on both the circular polarization of spin waves and the sign of net s pin density of ferrimagnet. Below the angular momentum compensation point, left- (right-) circularly polarized spin waves push a domain wall towards (away from) the spin-wave source. Above the angular momentum compensation point, on the other hand, the direction of domain wall motion is reversed. This bidirectional motion originates from the fact that the sign of spin-wave-induced magnonic torque depends on the circular polarization and the subsequent response of the domain wall to the magnonic torque is governed by the net spin density. Our finding provides a way to utilize a spin wave as a versatile driving force for bidirectional domain wall motion.
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen tly, a novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), has been uncovered and found to influence the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamic domain wall (DW) under a strong DMI and find that the DMI induces an annihilation of topological vertical Bloch lines (VBLs) by lifting the four-fold degeneracy of the VBL. As a result, velocity reduction originating from the Walker breakdown is completely suppressed, leading to a soliton-like constant velocity of the DW. Furthermore, the strength of the DMI, which is the key factor for soliton-like DW motion, can be quantified without any side effects possibly arising from current-induced torques or extrinsic pinnings in magnetic films. Our results therefore shed light on the physics of dynamic topological defects, which paves the way for future work in topology-based memory applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا