ﻻ يوجد ملخص باللغة العربية
Electric current exerts torques-so-called spin transfer torques (STTs)-on magnetic domain walls (DWs), resulting in DW motion. At low current densities, the STTs should compete against disorders in ferromagnetic nanowires but the nature of the competition remains poorly understood. By achieving two-dimensional contour maps of DW speed with respect to current density and magnetic field, here we visualize unambiguously distinct roles of the two STTs-adiabatic and nonadiabatic-in scaling behaviour of DW dynamics arising from the competition. The contour maps are in excellent agreement with predictions of a generalized scaling theory, and all experimental data collapse onto a single curve. This result indicates that the adiabatic STT becomes dominant for large current densities, whereas the nonadiabatic STT-playing the same role as a magnetic field-subsists at low current densities required to make emerging magnetic nanodevices practical.
Electron transport in magnetic orders and the magnetic orders dynamics have a mutual dependence, which provides the key mechanisms in spin-dependent phenomena. Recently, antiferromagnetic orders are focused on as the magnetic order, where current-ind
Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velo
Antiferromagnetic materials are outstanding candidates for next generation spintronic applications, because their ultrafast spin dynamics makes it possible to realize several orders of magnitude higher-speed devices than conventional ferromagnetic ma
We investigate ferrimagnetic domain wall dynamics induced by circularly polarized spin waves theoretically and numerically. We find that the direction of domain wall motion depends on both the circular polarization of spin waves and the sign of net s
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen