ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between Fe and Nd magnetism in NdFeAsO single crystals

539   0   0.0 ( 0 )
 نشر من قبل Andreas Kreyssig
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structural and magnetic phase transitions have been studied on NdFeAsO single crystals by neutron and x-ray diffraction complemented by resistivity and specific heat measurements. Two low-temperature phase transitions have been observed in addition to the tetragonal-to-orthorhombic transition at T_S = 142 K and the onset of antiferromagnetic (AFM) Fe order below T_N = 137 K. The Fe moments order AFM in the well-known stripe-like structure in the (ab) plane, but change from AFM to ferromagnetic (FM) arrangement along the c direction below T* = 15 K accompanied by the onset of Nd AFM order below T_Nd = 6 K with this same AFM configuration. The iron magnetic order-order transition in NdFeAsO accentuates the Nd-Fe interaction and the delicate balance of c-axis exchange couplings that results in AFM in LaFeAsO and FM in CeFeAsO and PrFeAsO.

قيم البحث

اقرأ أيضاً

149 - Peng Cheng , Huan Yang , Ying Jia 2008
Hall effect and magnetoresistance have been measured on single crystals of $NdFeAsO_{1-x}F_{x}$ with x = 0 ($T_c$ = 0 $ $K) and x = 0.18 ($T_c$ = 50 $ $K). For the undoped samples, strong Hall effect and magnetoresistance with strong temperature depe ndence were found below about 150 K. The magnetoresistance was found to be as large as 30% at 15 K at a magnetic field of 9 T. From the transport data we found that the transition near 155 K was accomplished in two steps: first one occurs at 155 K which may be associated with the structural transition, the second one takes place at about 140 K which may correspond to the spin-density wave like transition. In the superconducting sample with $T_c$ = 50 $ $K, it is found that the Hall coefficient also reveals a strong temperature dependence with a negative sign. But the magnetoresistance becomes very weak and does not satisfy the Kohlers scaling law. These dilemmatic results (strong Hall effect and very weak magnetoresistance) prevent to understand the normal state electric conduction by a simple multi-band model by taking account the electron and hole pockets. Detailed analysis further indicates that the strong temperature dependence of $R_H$ cannot be easily understood with the simple multi-band model either. A picture concerning a suppression to the density of states at the Fermi energy in lowering temperature is more reasonable. A comparison between the Hall coefficient of the undoped sample and the superconducting sample suggests that the doping may remove the nesting condition for the formation of the SDW order, since both samples have very similar temperature dependence above 175 K.
Single crystals of SrFe2-xPtxAs2 (0 < x < 0.36) were grown using the self flux solution method and characterized using x-ray crystallography, electrical transport, magnetic susceptibility, and specific heat measurements. The magnetic/structural trans ition is suppressed with increasing Pt concentration, with superconductivity seen over the range 0.08 < x < 0.36 with a maximum transition temperature Tc of 16 K at x = 0.16. The shape of the phase diagram and the changes to the lattice parameters are similar to the effects of other group VIII elements Ni and Pd, however the higher transition temperature and extended range of superconductivity suggest some complexity beyond the simple electron counting picture that has been discussed thus far.
Single crystal neutron diffraction is used to investigate the magnetic and structural phase diagram of the electron doped superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. Heat capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe$_2$As$_2$ into two distinct transitions. For $x$=0.025, we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with ($T_{mathrm{TO}}=99 pm 0.5$ K) and the antiferromagnetic transition occurs at $T_{mathrm{AF}}=93 pm 0.5$ K. We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at $x approx 0.055$. However, there is a region of co-existence of antiferromagnetism and superconductivity. The effect of the antiferromagnetic transition can be seen in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction. We infer from this that there is strong coupling between the antiferromagnetism and the crystal lattice.
The longitudinal in-plane magnetoresistance (LMR) has been measured in different Ba(Fe_(1-x)Co_x)2As2 single crystals and in LiFeAs. For all these compounds, we find a negative LMR in the paramagnetic phase whose magnitude increases as H^2. We show t hat this negative LMR can be readily explained in terms of suppression of the spin fluctuations by the magnetic field. In the Co-doped samples, the absolute value of the LMR coefficient is found to decrease with doping content in the paramagnetic phase. The analysis of its T dependence in an itinerant nearly antiferromagnetic Fermi liquid model evidences that the LMR displays a qualitative change of T variation with increasing Co content. The latter occurs at optimal doping for which the antiferromagnetic ground state is suppressed. The same type of analysis for the negative LMR measured in LiFeAs suggests that this compound is on the verge of magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا