ﻻ يوجد ملخص باللغة العربية
We demonstrate that the electronic spectrum of graphene in a one-dimensional periodic potential will develop a Landau level spectrum when the potential magnitude varies slowly in space. The effect is related to extra Dirac points generated by the potential whose positions are sensitive to its magnitude. We develop an effective theory that exploits a chiral symmetry in the Dirac Hamiltonian description with a superlattice potential, to show that the low energy theory contains an effective magnetic field. Numerical diagonalization of the Dirac equation confirms the presence of Landau levels. Possible consequences for transport are discussed.
We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasipa
We theoretically study electronic properties of a graphene sheet on xy plane in a spatially nonuniform magnetic field, $B = B_0 hat{z}$ in one domain and $B = B_1 hat{z}$ in the other domain, in the quantum Hall regime and in the low-energy limit. We
We report transport experiments on graphene quantum dots. We focus on excited state spectra in the near vicinity of the charge neutrality point and signatures of the electron-hole crossover as a function of a perpendicular magnetic field. Coulomb blo
We theoretically investigate electron transport through corrugated graphene ribbons and show how the ribbon curvature leads to an electronic superlattice with a period set by the corrugation wave length. Transport through the ribbon depends sensitive
Strain engineering of graphene takes advantage of one of the most dramatic responses of Dirac electrons enabling their manipulation via strain-induced pseudo-magnetic fields. Numerous theoretically proposed devices, such as resonant cavities and vall