ترغب بنشر مسار تعليمي؟ اضغط هنا

Conductivity in the anisotropic background

188   0   0.0 ( 0 )
 نشر من قبل Chanyong Park
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By using the gauge/gravity duality, we investigate the dual field theories of the anisotropic backgrounds, which are exact solutions of Einstein-Maxwell-dilaton theory with a Liouville potential. When we turn on the bulk gauge field fluctuation $A_x$ with a non-trivial dilaton coupling, the AC conductivity of this dual field theory is proportional to the frequency with an exponent depending on parameters of the anisotropic background. In some parameter regions, we find that this conductivity can have the negative exponent like the strange metal. In addition, we also investigate another U(1) gauge field fluctuation, which is not coupled with a dilaton field. We classify all possible conductivities of this system and find that the exponent of the conductivity is always positive.

قيم البحث

اقرأ أيضاً

We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-Maxwell system. The anisotropic background is specified by an arbitrary dynamical exponent $ u$, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component of the first Maxwell field and a non-zero longitudinal magnetic component of the second Maxwell field. The blackening function supports the Van der Waals-like phase transition between small and large black holes for a suitable first Maxwell field charge. The isotropic case corresponding to $ u = 1$ and zero magnetic field reproduces previously known solutions. We investigate the anisotropy influence on the thermodynamic properties of our background, in particular, on the small/large black holes phase transition diagram. We discuss applications of the model to the bottom-up holographic QCD. The RG flow interpolates between the UV section with two suppressed transversal coordinates and the IR section with the suppressed time and longitudinal coordinates due to anisotropic character of our solution. We study the temporal Wilson loops, extended in longitudinal and transversal directions, by calculating the minimal surfaces of the corresponding probing open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. We find that dynamical wall locations depend on the orientation of the quark pairs, that gives a crossover transition line between confinement/deconfinement phases in the dual gauge theory. Instability of the background leads to the appearance of the critical points $(mu_{vartheta,b}, T_{vartheta,b})$ depending on the orientation $vartheta$ of quark-antiquark pairs in respect to the heavy ions collision line.
We discuss a general five-dimensional completely anisotropic holographic model with three different spatial scale factors, characterized by a Van der Waals-like phase transition between small and large black holes. A peculiar feature of the model is the relation between anisotropy of the background and anisotropy of the colliding heavy ions geometry. We calculate the holographic entanglement entropy (HEE) of the slab-shaped region, the orientation of which relatively to the beams line and the impact parameter is characterized by the Euler angles. We study the dependences of the HEE and its density on the thermodynamic (temperature, chemical potential) and geometric (parameters of anisotropy, thickness, and orientation of entangled regions) parameters. As a particular case the model with two equal transversal scaling factors is considered. This model is supported by the dilaton and two Maxwell fields. In this case we discuss the HEE and its density in detail: interesting features of this model are jumps of the entanglement entropy and its density near the line of the small/large black hole phase transition. These jumps depend on the anisotropy parameter, chemical potential, and orientation. We also discuss different definitions and behavior of c-functions in this model. The c-function calculated in the Einstein frame decreases while increasing $ell$ for all $ell$ in the isotropic case (in regions of $(mu,T)$-plane far away from the line of the phase transition). We find the non-monotonicity of the c-functions for several anisotropic configurations, which however does not contradict with any of the existing c-theorems since they all base on Lorentz invariance.
The low temperature behaviour of the in-plane and c-axis conductivity of electron-doped cuprates like NCCO is examined; it is shown to be consistent with an isotropic quasiparticle scattering rate and an anisotropic interlayer hopping parameter which is non-zero for planar momenta along the direction of the d$_{x^2-y^2}$ order parameter nodes. Based on these hypotheses we find that both, the in-plane and the c-axis conductivity, vary linearly with temperature, in agreement with experimental data at millimiter-wave frequencies.
The electric conductivity is considered in the fully anisotropic holographic theory. The electric conductivity is derived in two different ways, and their equivalence for the fully anisotropic theory is shown. Numerical calculations of the electric c onductivity were done for Einstein-dilaton-three-Maxwell holographic model [29]. The dependence of the conductivity on the temperature, the chemical potential, the external magnetic field, and the spatial anisotropy of the heavy-ions collision (HIC) is studied. The electric conductivity jumps near the first-order phase transition are observed. This effect is similar to the jumps of holographic entanglement that were studied previously.
An ultralow lattice thermal conductivity of 0.14 W$cdot$ m$^{-1} cdot$ K$^{-1}$ along the $vec b$ axis of As$_2$Se$_3$ single crystals was obtained at 300 K by first-principles calculations involving the density functional theory and the resolution o f the Boltzmann transport equation. This ultralow lattice thermal conductivity arises from the combination of two mechanisms: 1) a cascade-like fall of the low-lying optical modes, which results in avoided crossings of these with the acoustic modes, low sound velocities and increased scattering rates of the acoustic phonons; and 2) the repulsion between the lone-pair electrons of the As cations and the valence $p$ orbitals of the Se anions, which leads to an increase in the anharmonicity of the bonds. The physical origins of these mechanisms lie on the nature of the chemical bonding in the material and its strong anisotropy. These results, whose validity has been addressed by comparison with SnSe, for which excellent agreement between the theoretical predictions and the experiments is achieved, point out that As$_2$Se$_3$ could exhibit improved thermoelectric properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا