ﻻ يوجد ملخص باللغة العربية
We construct clusters of classical Heisenberg spins with two-spin $vec{S}_i.vec{S}_j$-type interactions for which the ground state manifold consists of disconnected pieces. We extend the construction to lattices and couplings for which the ground state manifold splits into an exponentially large number of disconnected pieces at a sharp point as the interaction strengths are varied with respect to each other. In one such lattice we construct, the number of disconnected pieces in the ground state manifold can be counted exactly.
We study the ground state energy E_G(n) of N classical n-vector spins with the hamiltonian H = - sum_{i>j} J_ij S_i.S_j where S_i and S_j are n-vectors and the coupling constants J_ij are arbitrary. We prove that E_G(n) is independent of n for all n
Using (infinite) density matrix renormalization group techniques, ground state properties of antiferromagnetic S=1 Heisenberg spin chains with exchange and single-site anisotropies in an external field are studied. The phase diagram is known to displ
A study of the d-dimensional classical Heisenberg ferromagnetic model in the presence of a magnetic field is performed within the two-time Green functions framework in classical statistical physics. We extend the well known quantum Callen method to d
We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and cubic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the qu
Using the algebro-geometric approach, we study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain. We outline how classical nonlinear spin waves governed by the anisotropic Landau-Lifshitz equation arise