ﻻ يوجد ملخص باللغة العربية
In this paper we derive aggregate separation bounds, named after Davenport-Mahler-Mignotte (dmm), on the isolated roots of polynomial systems, specifically on the minimum distance between any two such roots. The bounds exploit the structure of the system and the height of the sparse (or toric) resultant by means of mixed volume, as well as recent advances on aggregate root bounds for univariate polynomials, and are applicable to arbitrary positive dimensional systems. We improve upon Cannys gap theorem cite{c-crmp-87} by a factor of $OO(d^{n-1})$, where $d$ bounds the degree of the polynomials, and $n$ is the number of variables. One application is to the bitsize of the eigenvalues and eigenvectors of an integer matrix, which also yields a new proof that the problem is polynomial. We also compare against recent lower bounds on the absolute value of the root coordinates by Brownawell and Yap cite{by-issac-2009}, obtained under the hypothesis there is a 0-dimensional projection. Our bounds are in general comparable, but exploit sparseness; they are also tighter when bounding the value of a positive polynomial over the simplex. For this problem, we also improve upon the bounds in cite{bsr-arxix-2009,jp-arxiv-2009}. Our analysis provides a precise asymptotic upper bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milnes algorithm cite{Miln92} in 2D.
We propose a functional implementation of emph{Multivariate Tower Automatic Differentiation}. Our implementation is intended to be used in implementing $C^infty$-structure computation of an arbitrary Weil algebra, which we discussed in the previous work.
In this paper, we present a new method for computing bounded-degree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary re
We give a separation bound for the complex roots of a trinomial $f in mathbb{Z}[X]$. The logarithm of the inverse of our separation bound is polynomial in the size of the sparse encoding of $f$; in particular, it is polynomial in $log (deg f)$. It is
We present two new algorithms for the computation of the q-integer linear decomposition of a multivariate polynomial. Such a decomposition is essential for the treatment of q-hypergeometric symbolic summation via creative telescoping and for describi
Given a straight-line program whose output is a polynomial function of the inputs, we present a new algorithm to compute a concise representation of that unknown function. Our algorithm can handle any case where the unknown function is a multivariate