ﻻ يوجد ملخص باللغة العربية
An important problem to be solved in modeling head-related impulse responses (HRIRs) is how to individualize HRIRs so that they are suitable for a listener. We modeled the entire magnitude head-related transfer functions (HRTFs), in frequency domain, for sound sources on horizontal plane of 37 subjects using principal components analysis (PCA). The individual magnitude HRTFs could be modeled adequately well by a linear combination of only ten orthonormal basis functions. The goal of this research was to establish multiple linear regression (MLR) between weights of basis functions obtained from PCA and fewer anthropometric measurements in order to individualize a given listeners HRTFs with his or her own anthropomety. We proposed here an improved individualization method based on MLR of weights of basis functions by utilizing 8 chosen out of 27 anthropometric measurements. Our objective experiments results show a superior performance than that of our previous work on individualizing minimum phase HRIRs and also better than similar research. The proposed individualization method shows that the individualized magnitude HRTFs could approximated well the the original ones with small error. Moving sound employing the reconstructed HRIRs could be perceived as if it was moving around the horizontal plane.
The Personal Alert Safety System (PASS) is an alarm signal device carried by firefighters to help rescuers locate and extricate downed firefighters. A fire creates temperature gradients and inhomogeneous time-varying temperature, density, and flow fi
Head-related impulse responses (HRIRs) are subject-dependent and direction-dependent filters used in spatial audio synthesis. They describe the scattering response of the head, torso, and pinnae of the subject. We propose a structural factorization o
During the steady gait, humans stabilize their head around the vertical orientation. While there are sensori-cognitive explanations for this phenomenon, its mechanical e fect on the body dynamics remains un-explored. In this study, we take profit fro
This paper addresses the problem of sound-source localization (SSL) with a robot head, which remains a challenge in real-world environments. In particular we are interested in locating speech sources, as they are of high interest for human-robot inte
Linear kinetic transport equations play a critical role in optical tomography, radiative transfer and neutron transport. The fundamental difficulty hampering their efficient and accurate numerical resolution lies in the high dimensionality of the phy