ترغب بنشر مسار تعليمي؟ اضغط هنا

Homomorphisms into mapping class groups. An addendum

167   0   0.0 ( 0 )
 نشر من قبل Mark Sapir
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This is an addendum to arXiv: 0810.5376. We show, using our methods and an auxiliary result of Bestvina-Bromberg-Fujiwara, that a finitely generated group with infinitely many pairwise non-conjugate homomorphisms to a mapping class group virtually acts non-trivially on an $R$-tree, and, if it is finitely presented, it virtually acts non-trivially on a simplicial tree



قيم البحث

اقرأ أيضاً

Let $Gamma$ be a finite index subgroup of the mapping class group $MCG(Sigma)$ of a closed orientable surface $Sigma$, possibly with punctures. We give a precise condition (in terms of the Nielsen-Thurston decomposition) when an element $ginGamma$ ha s positive stable commutator length. In addition, we show that in these situations the stable commutator length, if nonzero, is uniformly bounded away from 0. The method works for certain subgroups of infinite index as well and we show $scl$ is uniformly positive on the nontrivial elements of the Torelli group. The proofs use our earlier construction in the paper Constructing group actions on quasi-trees and applications to mapping class groups of group actions on quasi-trees.
This article is dedicated to the study of asymptotically rigid mapping class groups of infinitely-punctured surfaces obtained by thickening planar trees. Such groups include the braided Ptolemy-Thompson groups $T^sharp,T^ast$ introduced by Funar and Kapoudjian, and the braided Houghton groups $mathrm{br}H_n$ introduced by Degenhardt. We present an elementary construction of a contractible cube complex, on which these groups act with cube-stabilisers isomorphic to finite extensions of braid groups. As an application, we prove Funar-Kapoudjians and Degenhardts conjectures by showing that $T^sharp,T^ast$ are of type $F_infty$ and that $mathrm{br}H_n$ is of type $F_{n-1}$ but not of type $F_n$.
We construct explicit examples of geodesics in the mapping class group and show that the shadow of a geodesic in mapping class group to the curve graph does not have to be a quasi-geodesic. We also show that the quasi-axis of a pseudo-Anosov element of the mapping class group may not have the strong contractibility property. Specifically, we show that, after choosing a generating set carefully, one can find a pseudo-Anosov homeomorphism f, a sequence of points w_k and a sequence of radii r_k so that the ball B(w_k, r_k) is disjoint from a quasi-axis a of f, but for any projection map from mapping class group to a, the diameter of the image of B(w_k, r_k) grows like log(r_k).
169 - H. Endo , D. Kotschick 2006
We show that mapping class groups of surfaces of genus at least two contain elements of infinite order that are not conjugate to their inverses, but whose powers have bounded torsion lengths. In particular every homogeneous quasi-homomorphism vanishe s on such an element, showing that elements of infinite order not conjugate to their inverses cannot be separated by quasi-homomorphisms.
122 - Jiming Ma , Jiajun Wang 2019
We construct infinitely many linearly independent quasi-homomorphisms on the mapping class group of a Riemann surface with genus at least two which vanish on a handlebody subgroup. As a corollary, we disprove a conjecture of Reznikov on bounded width in Heegaard splittings. Another corollary is that there are infinitely many linearly independent quasi-invariants on the Heegaard splittings of three-manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا