ترغب بنشر مسار تعليمي؟ اضغط هنا

The peculiar dust shell of Nova DZ Cru (2003)

122   0   0.0 ( 0 )
 نشر من قبل Nye Evans
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Spitzer Space Telescope observations of the peculiar variable DZ Cru, identified by Rushton et al. (2008, MNRAS, 386, 289) as a classical nova. A dust shell, on which are superimposed a number of features, is prominent in the 5-35micron range some 4 years after eruption. We suggest that the dust in DZ Cru is primarily hydrogenated amorphous carbon in which aliphatic bands currently predominate, and which may either become predominantly aromatic as the dust is photo-processed by ultraviolet radiation from the stellar remnant, or more likely completely destroyed.

قيم البحث

اقرأ أيضاً

We present infrared spectroscopy of the classical nova V339 Delphini, obtained over a $sim2$ year period. The infrared emission lines were initially symmetrical, with HWHM velocities of 525 km s$^{-1}$. In later ($tgtrsim77$days, where $t$ is the tim e from outburst) spectra however, the lines displayed a distinct asymmetry, with a much stronger blue wing, possibly due to obscuration of the receding component by dust. Dust formation commenced at $sim$ day 34.75 at a condensation temperature of $1480pm20$K, consistent with graphitic carbon. Thereafter the dust temperature declined with time as $T_{rm d}propto{t}^{-0.346}$, also consistent with graphitic carbon. The mass of dust initally rose, as a result of an increase in grain size and/or number, peaked at $sim$ day 100, and then declined precipitously. This decline was most likely caused by grain shattering due to electrostatic stress after the dust was exposed to X-radiation. An Appendix summarises Planck Means for carbon, and the determination of grain mass and radius for a carbon dust shell.
We report on the discovery of an eclipsing dwarf nova (DN) inside the peculiar, bilobed nebula Te 11. Modelling of high-speed photometry of the eclipse finds the accreting white dwarf to have a mass 1.18 M$_odot$ and temperature 13 kK. The donor spec tral type of M2.5 results in a distance of 330 pc, colocated with Barnards loop at the edge of the Orion-Eridanus superbubble. The perplexing morphology and observed bow shock of the slowly-expanding nebula may be explained by strong interactions with the dense interstellar medium in this region. We match the DN to the historic nova of 483 CE in Orion and postulate that the nebula is the remnant of this eruption. This connection supports the millennia time scale of the post-nova transition from high to low mass-transfer rates. Te 11 constitutes an important benchmark system for CV and nova studies as the only eclipsing binary out of just three DNe with nova shells.
We present near-infrared and optical observations of moderately fast FeII-class Nova Scuti 2009 (V496 Sct) covering various phases; pre-maximum, early decline and nebular, during the first 10 months after its discovery followed by limited observation s up to 2011 April. In the initial phase the nova spectra show prominent P Cygni profiles and later all the lines are seen in emission. The notable feature of the near-IR spec- tra in the early decline phase is the rare presence of the first overtone bands of carbon monoxide (CO) in emission. The IR spectra show clear dust formation in the expand- ing ejecta at later phase about 150 days after the peak brightness. The presence of lines of elements with low ionization potentials like Na and Mg in the early IR spectra and the detection of CO bands in emission and the dust formation in V496 Sct represents a complete expected sequence in the dust formation in nova ejecta. The light curve shows a slow rise to the maximum and a slow decline indicating a prolonged mass loss. This is corroborated by the strengthening of P Cygni profiles during the first 30 days. The broad and single absorption components seen in many lines in the optical spectra at the time of discovery are replaced by two sharper components in the spectra taken close to the optical maximum brightness. These sharp dips seen in the P Cygni absorption components of Fe II and H I lines during the early decline phase show increasing outflow velocities. The onset of the nebular phase is evident from the optical spectra in 2010 March. During the nebular phase, several emission lines display saddle-like profiles. In the nebular stage, the observed fluxes of [O III] and H lines are used to estimate the electron number densities and the mass of the ejecta. The optical spectra show that the nova is evolved in the P_fe A_o spectral sequence.
From multi-epoch adaptive optics imaging and integral field unit spectroscopy we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterised by a large polar outflow velocity of 6720 +/- 650 km/s and knots moving at even larger velocities of 8450 +/- 570 km/s. We derive an expansion parallax distance of 8.2 +/- 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L_Sun = 4.34 +/- 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.
Context: We present results of an extensive world-wide observing campaign of MN Draconis. Aims: MN Draconis is a poorly known active dwarf nova in the period gap and is one of the only two known cases of period gap SU UMa objects showing the negati ve superhumps. Photometric behaviour of MN Draconis poses a challenge for existing models of the superhump and superoutburst mechanisms. Therefore, thorough investigation of peculiar systems, such as MN Draconis, is crucial for our understanding of evolution of the close binary stars. Methods: To measure fundamental parameters of the system, we collected photometric data in October 2009, June-September 2013 and June-December 2015. Analysis of the light curves, $O-C$ diagrams and power spectra was carried out. Results: During our three observational seasons we detected four superoutburts and several normal outbursts. Based on the two consecutive superoutbursts detected in 2015, the supercycle length was derived P_sc = 74 +/- 0.5 days and it has been increasing with a rate of P_dot = 3.3 x 10^(-3) during last twelve years. Based on the positive and negative superhumps we calculated the period excess epsilon = 5.6% +/- 0.1%, the period deficit epsilon_ = 2.5% +/- 0.6%, and in result, the orbital period P_orb = 0.0994(1) days (143.126 +/- 0.144 min). We updated the basic light curve parameters of MN Draconis. Conclusions: MN Draconis is the first discovered SU UMa system in the period gap with increasing supercycle length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا