ﻻ يوجد ملخص باللغة العربية
We consider the 2-point function of string vertex operators representing string state with large spin in AdS_5. We compute this correlator in the semiclassical approximation and show that it has the expected (on the basis of state-operator correspondence) form of the strong-coupling limit of the 2-point function of single trace minimal twist operators in gauge theory. The semiclassical solution representing the stationary point of the path integral with two vertex operator insertions is found to be related to the large spin limit of the folded spinning string solution by a euclidean continuation, transformation to Poincare coordinates and conformal map from cylinder to complex plane. The role of the source terms coming from the vertex operator insertions is to specify the parameters of the solution in terms of quantum numbers (dimension and spin) of the corresponding string state. Understanding further how similar semiclassical methods may work for 3-point functions may shed light on strong-coupling limit of the corresponding correlators in gauge theory as was recently suggested by Janik et al in arXiv:1002.4613.
The non-renormalization of the 3-point functions $tr X^{k_1} tr X^{k_2} tr X^{k_3}$ of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in t
We study at quantum level correlators of supersymmetric Wilson loops with contours lying on Hopf fibers of $S^3$. In $mathcal{N}=4$ SYM theory the strong coupling analysis can be performed using the AdS/CFT correspondence and a connected classical st
We calculate all components of thermal R-current correlators from AdS/CFT correspondence for non-zero momentum and energy. In zero momentum limit, we find an analytic expression for the components Gxx(Gyy). The dielectric function of strong coupling
We study near-extremal n-point correlation functions of chiral primary operators, in which the maximal scale dimension k is related to the others by k=sum_i k_i-m with m equal to or smaller than n-3. Through order g^2 in field theory, we show that th
We show that string-net models provide a novel geometric method to construct invariants of mapping class group actions. Concretely, we consider string-net models for a modular tensor category ${mathcal C}$. We show that the datum of a specific commut