ﻻ يوجد ملخص باللغة العربية
Here we report extensive ultrafast time-resolved reflectivity experiments on overdoped Bi$_{2}$Sr$_{2}$Ca$_{1-x}$Y$_x$Cu$_{2}$O$_{8+delta}$ single crystals (T$_C$=78 K) aimed to clarify the nature of the superconducting-to-normal-state photoinduced phase transition. The experimental data show the lack of the quasiparticles decay time divergence at the fluence required to induce this phase transition, in contrast to the thermally-driven phase transition observed at T$_C$ and at variance with recently reported photoinduced charge-density-wave and spin-density-wave to metal phase transitions. Our data demonstrate the non-thermal character of the superconducting-to-normal-state photoinduced phase transition. The data have been analyzed using an ad-hoc developed time-dependent Rothwarf-Taylor model, opening the question on the order of this non-equilibrium phase transition.
Ultrafast broadband transient reflectivity experiments are performed to study the interplay between the non-equilibrium dynamics of the pseudogap and the superconducting phases in Bi$_{2}$Sr$_{2}$Ca$_{0.92}$Y$_{0.08}$Cu$_{2}$O$_{8+delta}$. Once super
We report an ARPES investigation of the circular dichroism in the first Brillouin zone (BZ) of under- and overdoped Pb-Bi2212 samples. We show that the dichroism has opposite signs for bonding and antibonding components of the bilayer-split CuO-band
We report a fine tuned doping study of strongly overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ single crystals using electronic Raman scattering. Combined with theoretical calculations, we show that the doping, at which the normal state pseudogap closes
The Josephson Plasma Resonance is used to study the c-axis supercurrent in the superconducting state of underdoped Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ with varying degrees of controlled point-like disorder, introduced by high-energy electron irra
We estimated the ratios of $^{63}$Cu hyperfine coupling constants in the double-layer high-$T_mathrm{c}$ superconductor HgBa$_2$CaCu$_2$O$_{6+delta}$ from the anisotropies in Cu nuclear spin-lattice relaxation rates and spin Knight shifts to study th