ﻻ يوجد ملخص باللغة العربية
Measurements of the phonon density of states by inelastic neutron emph{time-of-flight} scattering and specific heat measurements along with first principles calculations, provide compelling evidence for the existence of an Einstein oscillator (emph{rattler}) at ${omega}_{E1} approx$ 5.0 meV in the filled skutterudite Yb$_{0.2}$Co$_{4}$Sb$_{12}$. Multiple dispersionless modes in the measured density of states of Yb$_{0.2}$Co$_{4}$Sb$_{12}$ at intermediate transfer energies (14 meV $leq$ emph{$omega$} $leq$ 20 meV) are exhibited in both the experimental and theoretical emph{density-of-states} of the Yb-filled specimen. A peak at 12.4 meV is shown to coincide with a second Einstein mode at emph{$omega_{E2} approx$} 12.8 meV obtained from heat capacity data. The local modes at intermediate transfer energies are attributed to altered properties of the host CoSb$_{3}$ cage as a result of Yb-filling. It is suggested that these modes are owed to a complementary mechanism for the scattering of heat-carrying phonons in addition to the mode observed at ${omega}_{E1} , approx$ 5.0 meV. Our observations offer a plausible explanation for the significantly-higher textit{dimensionless figures of merit} of filled skutterudites, compared to their parent compounds.
The phonon dynamics of filled skutterudite CeRu4Sb12 have been studied at room temperature by inelastic neutron scattering. Optical phonons associated with a large vibration of Ce atoms are observed at a relatively low energy of E = 6 meV, and show a
The filled skutterudite compound PrOsSb{} exhibits superconductivity below a critical temperature $T_mathrm{c} = 1.85$ K that develops out of a nonmagnetic heavy Fermi liquid with an effective mass $m^{*} approx 50 m_mathrm{e}$, where $m_mathrm{e}$ i
Anomalous metal-insulator transition observed in filled skutterudite CeOs$_4$Sb$_{12}$ is investigated by constructing the effective tight-binding model with the Coulomb repulsion between f electrons. By using the mean field approximation, magnetic s
A filled skutterudite, La$_{0.5}$Rh$_4$Sb$_{12}$, with a lattice constant of 9.284(2) {AA} was synthesized using a high-pressure technique. The electrical resistivity showed semiconducting behavior and the energy gap was estimated to be more than 0.0
We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt$_{4}$Ge$_{12-x}$Sb$_x$. Polycrystalline samples with Sb concentrations up to $x =$ 5 were synthesized and investigated by means of x-ray diffr