ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the ACA Phase Correction Scheme using the SMA

93   0   0.0 ( 0 )
 نشر من قبل Satoki Matsushita
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conducted the observational tests of a phase correction scheme for the Atacama Compact Array (ACA) of the Atacama Large Millimeter and submillimeter Array (ALMA) using the Submillimeter Array (SMA). Interferometers at millimeter- and submillimeter-wave are highly affected by the refraction induced by water vapor in the troposphere, which results as phase fluctuations. The ACA is planning to compensate the atmospheric phase fluctuations using the phase information of the outermost antennas with interpolating to the inner antennas by creating a phase screen. The interpolation and extrapolation phase correction schemes using phase screens are tested with the SMA to study how effective these schemes are. We produce a plane of a wavefront (phase screen) from the phase information of three antennas for each integration, and this phase screen is used for the interpolation and extrapolation of the phases of inner and outer antennas, respectively. The interpolation scheme obtains apparently improved results, suggesting that the ACA phase correction scheme will work well. On the other hand, the extrapolation scheme often does not improve the results. After the extrapolation, unexpectedly large phase fluctuations show up to the antennas at the distance of ~140 m away from the center of the three reference antennas. These direction vectors are almost perpendicular to the wind direction, suggesting that the phase fluctuations can be well explained by the frozen phase screen.

قيم البحث

اقرأ أيضاً

In gravitationally stratified fluids, length scales are normally much greater in the horizontal direction than in the vertical one. When modelling these fluids it can be advantageous to use the hydrostatic approximation, which filters out vertically propagating sound waves and thus allows a greater timestep. We briefly review this approximation, which is commonplace in atmospheric physics, and compare it to other approximations used in astrophysics such as Boussinesq and anelastic, finding that it should be the best approximation to use in context such as radiative stellar zones, compact objects, stellar or planetary atmospheres and other contexts. We describe a finite-difference numerical scheme which uses this approximation, which includes magnetic fields.
We present a new way to solve the platform deformation problem of co-planar interferometers. The platform of a co-planar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geome tric delay of each baseline, and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modelled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50% - 70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other co-planar telescopes but also to single dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.
The Array for Microwave Background Anisotropy (AMiBA) is a radio interferometer for research in cosmology, currently operating 7 0.6m diameter antennas co-mounted on a 6m diameter platform driven by a hexapod mount. AMiBA is currently the largest hex apod telescope. We briefly summarize the hexapod operation with the current pointing error model. We then focus on the upcoming 13-element expansion with its potential difficulties and solutions. Photogrammetry measurements of the platform reveal deformations at a level which can affect the optical pointing and the receiver radio phase. In order to prepare for the 13-element upgrade, two optical telescopes are installed on the platform to correlate optical pointing tests. Being mounted on different locations, the residuals of the two sets of pointing errors show a characteristic phase and amplitude difference as a function of the platform deformation pattern. These results depend on the telescopes azimuth, elevation and polarization position. An analytical model for the deformation is derived in order to separate the local deformation induced error from the real hexapod pointing error. Similarly, we demonstrate that the deformation induced radio phase error can be reliably modeled and calibrated, which allows us to recover the ideal synthesized beam in amplitude and shape of up to 90% or more. The resulting array efficiency and its limits are discussed based on the derived errors.
Comparison of hydrodynamic calculations with experimental data inevitably requires a model for converting the fluid to particles. In this work, nonlinear $2to 2$ kinetic theory is used to assess the overall accuracy of various shear viscous fluid-to- particle conversion models, such as the quadratic Grad corrections, the Strickland-Romatschke (SR) ansatz, self-consistent shear corrections from linearized kinetic theory, and the correction from the relaxation time approach. We test how well the conversion models can reconstruct, using solely the hydrodynamic fields computed from the transport, the phase space density for a massless one-component gas undergoing a 0+1D longitudinal boost-invariant expansion with approximately constant specific shear viscosity in the range $sim 0.03 le eta/s le sim 0.2$. In general we find that at early times the SR form is the most accurate, whereas at late times or for small $eta/ssim 0.05$ the self-consistent corrections from kinetic theory perform the best. In addition, we show that the reconstruction accuracy of additive shear viscous $f = f_{rm eq} + delta f$ models dramatically improves if one ensures, through exponentiation, that $f$ is always positive. We also illustrate how even more accurate viscous $delta f$ models can be constructed if one includes information about the past evolution of the system via the first time derivative of hydrodynamic fields. Such time derivatives are readily available in hydrodynamic simulations, though usually not included in the output.
The thermal Sunyaev-Zeldovich (SZ) effect presents a relatively new tool for characterizing galaxy cluster merger shocks, traditionally studied through X-ray observations. Widely regarded as the textbook example of a cluster merger bow shock, the wes tern shock front in the Bullet Cluster (1E0657-56) represents the ideal test case for such an SZ study. We aim to reconstruct a parametric model for the shock SZ signal by directly and jointly fitting deep, high-resolution interferometric data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Atacama Compact Array (ACA) in Fourier space. The ALMA+ACA data are primarily sensitive to the electron pressure difference across the shock front. To estimate the shock Mach number $M$, this difference can be combined with the value for the upstream electron pressure derived from an independent Chandra X-ray analysis. In the case of instantaneous electron-ion temperature equilibration, we find $M=2.08^{+0.12}_{-0.12}$, in $approx 2.4sigma$ tension with the independent constraint from Chandra, $M_X=2.74pm0.25$. The assumption of purely adiabatic electron temperature change across the shock leads to $M=2.53^{+0.33}_{-0.25}$, in better agreement with the X-ray estimate $M_X=2.57pm0.23$ derived for the same heating scenario. We have demonstrated that interferometric observations of the SZ effect provide constraints on the properties of the shock in the Bullet Cluster that are highly complementary to X-ray observations. The combination of X-ray and SZ data yields a powerful probe of the shock properties, capable of measuring $M$ and addressing the question of electron-ion equilibration in cluster shocks. Our analysis is however limited by systematics related to the overall cluster geometry and the complexity of the post-shock gas distribution. To overcome these limitations, a joint analysis of SZ and X-ray data is needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا