ﻻ يوجد ملخص باللغة العربية
We present molecular line observations, made with angular resolutions of ~20, toward the filamentary infrared dark cloud G34.43+0.24 using the APEX [CO(3-2), 13CO(3-2), C18O(3-2) and CS(7-6) transitions], Nobeyama 45 m [CS(2-1), SiO(2-1), C34S(2-1), HCO+(1-0), H13CO+(1-0) and CH3OH(2-1) transitions], and SEST [CS(2-1) and C18O(2-1) transitions] telescopes. We find that the spatial distribution of the molecular emission is similar to that of the dust continuum emission observed with 11 resolution showing a filamentary structure and four cores. The cores have local thermodynamic equilibrium masses ranging from 3.3x10^2 - 1.5x10^3 solar masses and virial masses from 1.1x10^3 - 1.5x10^3 solar masses, molecular hydrogen densities between 1.8x10^4 and 3.9x10^5 cm^{-3}, and column densities >2.0x10^{22} cm^{-2}; values characteristics of massive star forming cores. The 13CO(3-2) profile observed toward the most massive core reveals a blue profile indicating that the core is undergoing large-scale inward motion with an average infall velocity of 1.3 km/s and a mass infall rate of 1.8x10^{-3} solar masses per year. We report the discovery of a molecular outflow toward the northernmost core thought to be in a very early stage of evolution. We also detect the presence of high velocity gas toward each of the other three cores, giving support to the hypothesis that the excess 4.5 $mu$ emission (green fuzzies) detected toward these cores is due to shocked gas. The molecular outflows are massive and energetic, with masses ranging from 25 -- 80 solar masses, momentum 2.3 - 6.9x10^2 Msun km/s, and kinetic energies 1.1 - 3.6x10^3 Msun km^2 s^{-2}; indicating that they are driven by luminous, high-mass young stellar objects.
We present the B-fields mapped in IRDC G34.43+0.24 using 850,$mu$m polarized dust emission observed with the POL-2 instrument at JCMT. We examine the magnetic field geometries and strengths in the northern, central, and southern regions of the filame
We performed a multiwavelength study toward infrared dark cloud (IRDC) G34.43+0.24. New maps of 13CO $J$=1-0 and C18}O J=1-0 were obtained from the Purple Mountain Observatory (PMO) 13.7 m radio telescope. At 8 um (Spitzer - IRAC), IRDC G34.43+0.24 a
The initial conditions of massive star and star cluster formation are expected to be cold, dense and high column density regions of the interstellar medium, which can reveal themselves via near, mid and even far-infrared absorption as Infrared Dark C
Infrared dark clouds (IRDCs) are thought to be potential hosts of the elusive early phases of high-mass star formation. Here we conduct an in-depth kinematic analysis of one such IRDC, G034.43+00.24 (Cloud F), using high sensitivity and high spectral
We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. We present the 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) observations of G47.06+0.26 obtained with the Purple Mount