ﻻ يوجد ملخص باللغة العربية
We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk231. In total 25 lines are detected, including CO J=5-4 through J=13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J=8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J=8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J=8. X-rays from the accreting supermassive black hole in Mrk231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.
We present a new suite of hydrodynamical simulations and use it to study, in detail, black hole and galaxy properties. The high time, spatial and mass resolution, and realistic orbits and mass ratios, down to 1:6 and 1:10, enable us to meaningfully c
The forthcoming Laser Interferometer Space Antenna (LISA) will probe the population of coalescing massive black hole (MBH) binaries up to the onset of structure formation. Here we simulate the galactic-scale pairing of $sim10^6 M_odot$ MBHs in a typi
More than two hundred supermassive black holes (SMBHs) of masses $gtrsim 10^9,mathrm{M_{odot}}$ have been discovered at $z gtrsim 6$. One promising pathway for the formation of SMBHs is through the collapse of supermassive stars (SMSs) with masses $s
We present results of long-slit and panoramic spectroscopy of extended gaseous disks in 18 nearby S0 galaxies, mostly in groups. The gas in our S0s is found to be often accreted from outside that is implied by its decoupled kinematics: at least 5 gal
We have investigated the gas content of a sample of several hundred AGN host galaxies at z$<$1 and compared it with a sample of inactive galaxies, matched in bins of stellar mass and redshift. Gas masses have been inferred from the dust masses, obtai