ﻻ يوجد ملخص باللغة العربية
We perform coupled-cluster calculations for the doubly magic nuclei 4He, 16O, 40Ca and 48Ca, for neutron-rich isotopes of oxygen and fluorine, and employ bare and secondary renormalized nucleon-nucleon interactions. For the nucleon-nucleon interaction from chiral effective field theory at order next-to-next-to-next-to leading order, we find that the coupled-cluster approximation including triples corrections binds nuclei within 0.4 MeV per nucleon compared to data. We employ interactions from a resolution-scale dependent similarity renormalization group transformations and assess the validity of power counting estimates in medium-mass nuclei. We find that the missing contributions due to three-nucleon forces are consistent with these estimates. For the unitary correlator model potential, we find a slow convergence with respect to increasing the size of the model space. For the G-matrix approach, we find a weak dependence of ground-state energies on the starting energy combined with a rather slow convergence with respect to increasing model spaces. We also analyze the center-of-mass problem and present a practical and efficient solution.
Background: Effective interactions for elastic nucleon-nucleus scattering from first principles require the use of the same nucleon-nucleon interaction in the structure and reaction calculations, as well as a consistent treatment of the relevant oper
We present an overview of the evolution of ab initio methods for few-nucleon systems with A ge 4, tracing the progress made that today allows precision calculations for these systems. First a succinct description of the diverse approaches is given. I
Using many-body perturbation theory and coupled-cluster theory, we calculate the ground-state energy of He-4 and O-16. We perform these calculations using a no-core G-matrix interaction derived from a realistic nucleon-nucleon potential. Our calculat
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly highe
We report converged results for the ground and excited states and matter density of 16-O using realistic two-body nucleon-nucleon interactions and coupled-cluster methods and formalism developed in quantum chemistry. Most of the binding is obtained w